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Synopsis

In this study we use the correct entropic spring force in the gap as discussed in Part | including
hydrodynamic interactions with the wall to study the effect of confinement on deoxyribose nucleic
acid rheology and chain dynamics. We present results for the chain density, the velocity, and the
force density of the chains, which change rapidly over the length scale of the chain size. We
associate this size and dynamics in thesar wall layers to the configurational dispersion layer
thicknesssp found in polymer shear flow dynamics in the absence of the M@ibpra and Larson
(2002; Hur et al. (2000]. Though such rapid variation in velocity and density profiles is localized
near the wall, its effect on average mechanical properties is global and is felt even at large channel
sizes beyond 2Bg. We determine the effective viscosity of the dilute polymer solutions using
self-consistent dynamics in these confined geometries and for large gap widths determine how the
viscosity asymptotically approaches its bulk value. Finally, we also study the details of individual
chain dynamics under confinement: This includes the tumbling motion of a chain in shear/Poiseuille
flow, and relaxation from an extended state. We find that the confinement results in two different
measures of the chain relaxation time: one shorter and the other longer than the longest relaxation
time in the bulk. These two relaxation times are related to dynamics perpendicular and parallel to
the walls, respectively. We show that different rheological experiments are sensitive to different
specific relaxation times. @004 The Society of RheologyDOI: 10.1122/1.1648643

I. INTRODUCTION

In Part | of this series of communicatiofd/oo et al. (2004], we have shown that the
presence of confining walls alters the random walk of the polymer chain near the bound-
aries in a planar channel, thereby changing its entropic spring force law. We have also
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found that the confinement increases the viscous drag on the chain, and to accomplish a
correct description of the chain dynamics and the fluid rheology in the presence of
confinement, it is necessary to correct the entropic spring force law and the viscous drag.
In this communication we apply these findings to microchannel flows to study the rhe-
ology and chain dynamics of dilute deoxyribose nucleic a&dA) solutions in the
presence of confining walls.

As shown in previous studidéwubert and Tirrel(1982; Ausserreet al. (1991); Brunn
(1976; Brunn and Grisafi(1987; Chopra and Larsori2002; Mavrantzas and Beris
(1992; Muller-Mohnssenet al. (1990; Schiek and Shagfef1995], the main conse-
quence of the confinement is that near the boundary, there exists a region called the
depletion layerwhere chain segments are depleted due to the excluded volume interac-
tion with the wall. Therefore, the chain concentration varies from zero at the wall to its
bulk value over the length scale of this depletion layer. Clearly, the variation in concen-
tration is coupled to variation in other quantities such as the force density and velocity
profile. In this study, we have investigated the inter-relation between the depletion layer
thickness and the configurational dispersion layer thickness in shear flow in the absence
of confinemen{Chopra and Larsof2002; Hur et al. (2000]. Based on this investiga-
tion, we have developed the large gap width asymptotic scalings for the effective rheol-
ogy of the dilute DNA solutions.

We have also investigated the chain tumbling dynamics both in the absence and
presence of confinement via examining the appropriate autocorrelation and crosscorrela-
tion of chain extension. By employing both Brownian dynamics simulations as well as
analytical techniques we have elucidated the mechanisms involved in tumbling dynamics.
We also endeavor to understand chain dynamics in confined geometries by examining the
chain relaxation times. Specifically, it has been shown that the confinement splits the
isotropic bulk relaxation time into two relaxation times: one perpendicular to the confin-
ing walls and the other parallel. These two relaxation times are closely related to tum-
bling chain dynamics in shear flow as well as to chain relaxation from an initially
stretched configuration.

Il. EFFECTIVE VISCOSITY
A. Definitions

To quantify the rheology of DNA solutions in thin channel shear flow we define the
effective shear viscosity;eff as the viscosity of the solution averaged over the gap width

H:
ﬁzif“
H Jo

where 74 is the Newtonian solvent viscosity ar{dp (y)) is the ensemble average of
nonlocal polymeric shear stress. Note that in the parallel plate geom@frys equal to

the ratio of the shear stress to the shear rate at the wall and therefore is the measurable
viscosity in standard rheometry. For the case of Poiseuille flow, we define the effective
viscosity as

)
dy, 1

eff
n QnNewtonian
—_— =, (2

s Qnon-Newtonian

whereQnewtonianiS the volumetric flowrate in the absence of polyrn@r DNA) present
in the solution, andnon-Newtonian'S the flowrate with the polymer present.
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FIG. 1. The effective viscosity is independent\fi at small gap widttH = 1 Rg. Only at large enough gap
width, the effective viscosity is a function &¥i.

B. Narrow gap results [H< O(Rg)]

Two main factors that contribute to chain deformation in thin gap flows are the con-
fining effect of the walls and the flow-induced deformation. In the absence of flow, due to
the presence of the walls, a random walk in the direction perpendicular to the walls is
greatly hindered, thus the chain is forced to spread in directions parallel to the walls. As
the flow strength increases the chain resides in a small dispersion Byer (62) which
decreases in thickness &¢i increaseqdHur et al. (2000]. Therefore, under extreme
confinement, the chain is already in a highly deformed state even without any flow and
the effect of applying flow does not cause additional chain deformation except athigh
(data corresponding td = 1 Rgin Fig. 1). Therefore over a largé/i range, the effec-
tive viscosity, which is related tép , is not a function ofWi but a function only of gap
width H. Even though the extension in the direction perpendicular to the wallen dp)
is nearly constant over a lar§i range[as shown by the collapse of data at differévit
for small H into one in Fig. 2b)] for extreme confinement, the extension in the flow
direction (L1) remains a strong function &/i [Fig. 2(a)]. Note in this context that shear
thinning in the dispersion layer occurs at higti and thusdp is independent ofVi
below a criticalWi (as is the shear viscosjtyChain extension in the flow directioi.{),
on the other hand, is a rapidly increasing functioWéif until it asymptotes to a constant
value roughly half of the chain’s contour lendtHur et al. (2000].

Therefore, under extreme confinement, the effective viscosity is independé&nit of
and is closely related to the zero shear viscosity of the ofiagn 1). Since the zero shear
viscosity is proportional to the relaxation time?ff— 75 Scales as the relaxation time
which is obtained from the zero-shear stress autocorrelation function in thin gap flows.
The stress autocorrelation function will be discussed in detail in Sec. IV. In Fig. 3 we
have plotted the relative effective viscosity at laMi (Wi = 1) and it compares favor-
ably with the normalized chain relaxation time in the thin gap. Also shown in the figure
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FIG. 2. Chain size vs gap width fax-phage DNA[15 spring wormlike bead-spring chai#/LC)] at various
Wi in both shear and Poiseuille floua) Maximum chain extension in flow directiorL{) and (b) chain
extension in flow gradient directionsg).

is the relaxation time estimate from the loss of configurational space volume due to
confinement. This will be discussed in detail in Sec. IV as well.

C. Intermediate gap results [H~ O(Rg)]

As the gap width increases, the relative importance of the effect of the confining wall
decreases while the effect of the flow strength increases. In general the effective viscosity
depends on both flow strength and the gap width at intermediate gap widths. Even though
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FIG. 3. Relaxation time based on autocorrelation of zero-shear stress as a function of gap width. Also shown
are configurational volume estimate of the relaxation time and effective viscodityi at 1.

the variations in chain density and force density are localized to regions near the walls,
the effective viscosity is well below its asymptotic bulk value and the effect of the wall
on the effective viscosity is still seen even at the gap widths & @0Fig. 4). This effect

is more pronounced at low flow strength where the dispersion layer thickidgdsig
largest and therefore the interaction of the chain with the wall is the greatest. A typical
plot of the effective viscosity is shown in Fig. 4 as a function of flow strength.
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FIG. 4. Effective viscosity vs gap width fax-phage DNA modeled by both WLC and bead-rod chain in shear
flow.
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Mavrantzas and Beri€l992 in their recent study added the effect of the wall on the
Hookean probability distribution function and found that at higher shear rate the density
profile decreasechear the wall. This is in contrast to previous studiesering and Rabin
(1990; Mavrantzas and Berigl992] including their own in which the density profile
increased near the wall as the shear rate increased. Inomlwcal Brownian dynamics,
we find the chain segmental density near the walleasesat higher shear rates. We have
also performedocal Brownian dynamics simulation to determine whether the discrep-
ancy between our result and that of Mavrantzas and B2882 is due to nonlinearity of
the spring force or thiocal velocity field. In contrast to ounonlocalBrownian dynamics
simulation results, in oulocal simulation, we find the chain densitlecreasesiear the
wall. Therefore, the discrepancy between their finding and ours is not due to nonlinearity
of the spring force law but is due to tHecal velocity field they used. In our more
accuratenonlocalvelocity field, near the wall thénonloca) shear rate is higher than the
local shear rate. The chains are more extended in the flow diredfign 2(a)] and less
extended in the flow gradient directi¢Rig. 2(b)] in the nonlocal flow field as compared
to the local flow field. Therefore, if we consider a chain residing very near the wall, the
chain’s configurational space in the local flow fieldtliscker (i.e., 5p is large) in the
flow gradient direction as compared to the chain’s configurational space in the nonlocal
flow field. It follows that the chain in the local field is repelled from the wall resulting in
a lower chain segmental density profile near the wall. For nonlocal flow fields, the chain’s
configurational space is thinnére., 5p is smallej and can approach the wall more
readily, thus increasing the density profile near the wall.

D. Large gap asymptotic results [H> O(Rg)]

As we mentioned previously, near the wall, the chain and the force density profiles
change rapidly over the length scale of the chain. However, in the region away from the
wall these quantities remain constant. Moreover, our simulations clearly show that as the
gap width is increased, these rapid variations near the wall remain of the same shape and
in the limit of infinite gap width, the force density function can be treated dmta
function located near the walFig. 5. Moreover, at sufficiently large gap widths, the
details of the profile near the wall are not important and only the integral of this profile,
which approaches a constant, is relevant. Thus, in order to develop an analytical relation-
ship for the effective viscosity, the force density profile is approximatedtes fanction
as shown in Fig. 5. The momentum equatiéy. (12) in Part [] is solved in the limit of
large gap widttH and one obtains the following expression for the effective viscosity:

Cshear
721~ Pk P sy Tt )

where CghegriS @ constant independent of flow strength. We define the dispersion layer

thicknessép (or 85) as
/EN - 1(R3R3)
op = VT, 4

where the summation is over the beads on the chainRéni$ they component of the
bead position relative to its center of mass. Thereférgjs just they component of the
radius of gyration. Note that unlike chains confined between tveorow walls

(H ~ O(Rg) in Fig. 2(b)], 8, does not change appreciably from its bulk value and bulk
scaling and for large gap the chains can interact with only one wall. Since for flexible
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chains, the polymeric contribution to shear viscosity®) scales asWi~ 12 and the
configurational dispersion layesf) scales asVi~ Y4 [Hur et al. (20007, from Eq.(3)
we find A 7°( = 72— PUK) scales agvi~34H at largeWi. Note that the predictions
of H and Wi dependence of the effective viscosity are consistent with full Brownian
dynamics simulation resul{ig. 6). The inverse gap width dependence result is consis-
tent with the rigid rod theory of Schiek and Shaqf@é895 and thus is applicable to both
flexible and rigid chains. On the other hand, chains of different flexibilities clearly are
characterized by a differeM/i dependence a&neﬁ. A neﬁ for flexible chains scales as
Wi~ 34 while for rigid rods scales a#/i~ 2 due to different scalings fopP.

A similar analysis can be carried out for Poiseuille flow. The expression for the
effective viscosity becomes

i~ 1 _ 1 i Cpoise )
77eff nbulk nbulk ns] H '

Once again the inverse gap width dependence is observed.

[ll. SINGLE CHAIN DYNAMICS
A. Chain autocorrelations in thin gap flows

We have also examined single chain dynamics in the confined flows via examining the
power spectral densityPSD which is defined as the Fourier transform of the autocor-
relation of the chain’s end-to-end distance in the flow directign viz.
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concentration is defined as= ngpRg?’/ nsL where&T is the viscous drag on the chainy, is the number
density of the chainl. is the contour length of the chain, and is the solvent viscosity.

PSDw) = f T (LiLy0)e ¢t ©)

Hur et al. (2000 studied the PSD of-phage DNA in three-dimension&BD) bulk
shear flow and found three distinct regions in the frequency domain: In the low frequency
regime the PSD is found to be constant and thus independent of the frequency. At
intermediate frequencies, the coupling of Browning fluctuations in the gradient direction
and the convection in the flow direction causes the PSD to decayéé‘. Finally, in the
high frequency regime, the PSD decayme?sl'6 and this region is due solely to Brown-
ian fluctuations.

In our study, the presence of the chains and their associated extra stress creates a
region of higher shear near the wall and a region of lower shear away from the wall.
Since the chain segmental density is lower near the wall there are fewer chains undergo-
ing tumbling at a faster rate than in the bulk. Also the presence of the wall reduces the
dispersion layer sizép . Since tumbling results from the coupling of convection in the
flow direction and Brownian fluctuations in the gradient direction, the effective magni-
tude of the convective velocity the chain samples is greatly reduced near the wall. This
results in a hindered tumbling motion near the wall. Therefore, chains in the confined
geometry undergo less tumbling in shear flows and are less extended than in the bulk.
Shown in Fig. 7 are the PSDs of bead-spring models as calculated from Brownian
dynamics simulation. As the gap width decreases, the chains are less extended as can be
seen from the lower plateau of the PSD at low frequency and the coupling between the
Brownian fluctuations and the shear flow is reduced as can be seen in the intermediate
frequency region. The high frequency region is purely Brownian and is not affected by
the confinement. As will be discussed in Sec. IV, a main consequence of confinement is
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FIG. 7. PSD of bead-spring model. As the gap width decreases, tumbling motion is hindered. The reduction in
chain relaxation time in thin gaps results in lower effectiMe and when this is taken into account, a good
overlap between thin gap PSD and bulk PSD can be obtained.

to decrease the chain relaxation time. Therefore, by rescaling the relaxation time of
the PSD with the thin gap relaxation time (instead of the bulk relaxation tinewve can
obtain a perfect overlap between the thin gap PSD at gap witlth 2Rg and
Wi = 10 (which corresponds tovie = 2.23 due to the reduction in, ) and the bulk
PSD atWi = 2.23(Fig. 7).

For the case of Poiseuille flow, due to the symmetry of the velocity profile, we have
three distinct characteristic regions as shown in Fig. 8. Near the wall, as in the shear flow
case, the chains are depleted and we have less tumbling. Near the center of the channel
we have a region of low shear where chains undergo no tumbling motion at all. Between
these two regions, chains undergo tumbling motion in two different directions due to the
sign change of the shear rate. To compare the PSD of Poiseuille flow to that of shear flow,
one has to define the flow strength unambiguously in both cases. For the case of shear
flow, the shear rate defined as the velocity gradient is constant everywhere across the gap
for the case of Newtonian flow. But for Poiseuille flow the velocity gradient changes in
the channel and there are different ways of defining the characteristic shear rate. Two
common choices are the wall velocity gradient or the averaged velocity gradient over the
gap. The former shear rate is twice the latter shear rate for the case of Newtonian flow. In
this study we have investigated both choices and found the latter is a more meaningful
shear rate for correlating tumbling dynamics of a single chain in Poiseuille flow. If we use
the first definition of shear rate, we find the chains are less extended in Poiseuille flow
than in shear flow, as signified by the lower plateau value at low frequencies in Fig. 8. No
noticeable tumbling motion is present in Poiseuille flowM&t = 10 between confined
walls of 2Rg, while there is considerable tumbling motion present in shear flow.

There are two main reasons for the drastic reduction in tumbling motion for the case
of Poiseuille flow. The first reason is timeagnitudeof the local shear rate decreases near
the center of the channel and thus the effective deformation that the chain experiences
near the center of the channel is smaller. Hence, the chains undergo tumbling at a very
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motion is observed in both Poiseuille and wedge flow compared to shear flow. For the upper insert figure: A
schematic diagram for wedgeflow. Locally this is identical to shear flow except at the center where the shear
rate changes sign. For the lower inset figure: Schematic diagram of regions where a chain can undergo tumbling
motion in Poiseuille flow.

low effective shear rate. The second reason is the changgmbdf velocity gradient in

the center of the channel. We have carried out simulations of chain dynamicsddge

flow as shown in Fig. 8. Even though the absolute magnitude of the local shear rate is the
same for both shear andedgeflow, we find considerable reduction in the tumbling
motion in wedgeflow as also shown in Fig. 8. The important factor in chain tumbling
dynamics is the averagaggnedvelocity gradient within the chain configurational disper-
sion layer. For a Poiseuille flodand wedgeflow) near the center of the channel, the
region where the average velocity gradient is small can be bigger than the configurational
dispersion layer due to the change in the sign of the shear rate and thus the chain
effectively sees nmet velocity gradient. Also the symmetry line in the center of the
channel for awvedgeflow can be thought of as an imaginary wall thereby reducing the
effectivegap width to half of the equivalent shear flow resulting in a reduced effective
relaxation time. It follows that the type of flow can also further suppress the relaxation
time scale of the chain dynamics in a thin gap. On the other hand, if we use the second
definition for the shear rate to defii (i.e., defined in terms if the average velocity
gradient across the ggphough the wall shear rate for the Poiseuille flow is twice that of
the shear flow at the sanWi, we find on average that both shear and Poiseuille flow
create chain tumbling at the same frequency and we find that the respective PSDs for the
tumbling motion overlap perfectly as shown in Fig. 9.

B. Chain crosscorrelations in 3D bulk flows

To further elucidate the mechanism of chain tumbling dynamics in shear flow, we have
also looked at thénormalized cross-correlation function of the chain extensions in 1 and
2 Cartesian directions. The cross-correlation function is defined as
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where{...) denotes an average over timeFirst we consider the cross-correlation for
linear and pre-averaged nonlinear chains in 3D bulk shear flow and then we will inves-
tigate the effect of confinement on full nonlinear chain dynamics.

The normalizedcross-correlation function for FENE-P dumbbell is given [Woo
(20031

[1+TH(T)/rf]e” 12"
2+ 1Wicf2

®

FENE-P
Ci T)

whereH(T) is the heaviside function antl( = 1—(R?)/b) is the stiffness factor. Sub-
stitutingf = 1 gives the Hookean dumbbell result. The stiffness fatfor the FENE-P

can be determined by solving the following cubic equation, which arises from the closure
of the FENE-P constitutive equation at steady state

2Wi? 1
LFENE-R ) = ( a ty/f-1=o 9)

f3+(1

Similarly one can obtain the cross correlation function for multi-spring models such as
Rouse and FENE-PM modgiVoo (2003].

For FENE-P dumbbells, the effect of the nonlinear spring is taken into account by
pre-averaging the nonlinear term in the spring force. This results in a stiffer spring at
higher flow strength but the spring is still linear at any given flow strength.

We note that for linear spring models in shear flow, at high flow streldgithEq. (8)
with f = 1 becomes independent Wi and C1x(T) is positive for all timeT. On the
other hand, for pre-averaged nonlinear spring model FENE-P, the spring becomes stiffer
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at higherWi and the correlation time becomes smaller due to the reduction in the stiff-
ness factorf. However, the crosscorrelation remains positive for all timdor the
FENE-P and linear spring. In contrast, recent Brownian dynamics simuldt@mspra
and Larson(2002] of nonlinear spring chaingithout pre—averaginghow a negative
valley both at positive and negative times at high value&/ofis shown in Fig. 10. Since
linear spring chains which also undergo tumbling motion are characterized by no such
negative valleys, the negative valleys are due toalinear couplingof the spring forces
in the flow direction and in the gradient direction. Thisnlinear couplingresults in the
thinning andthickeningof the chain configurational dispersion layer thickne8g) (dur-
ing the tumbling cycle. Specifically the thinning process, which accompanies the stretch-
ing of the chain in the flow direction, gives rise to the negative valleys. As mentioned
earlier for pre-averaged nonlinear spring models, at a conéfattie spring is essentially
linear with a different spring stiffness constant. Therefore, the dispersion layer thickness
stays constant during the tumbling cycle. Hence, the pre-averaged models fail to give the
negative valleys in the crosscorrelation. During the thinning cycle, the chain extends in
the flow direction andhonlinear couplingof forces in the flow direction and flow gradient
direction causes the chain to rotate toward the stagnation line resulting in a thinning of
the chain configurational dispersion layer. During the thickening cycle, the chain con-
tracts in the flow direction and the configurational dispersion layer thickens in flow
gradient direction. The net effect of these thinning and thickening cycles is to rotate the
chain in the same direction as the rotational component of the flow. Though pre-averaged
nonlinear spring models fail to mimic thiadditional rotationdue to the lack of any
nonlinear coupling of the spring force, a minute amount of added vorticity to the applied
shear flow makes the dynamics of even linear springs in qualitative agreement with our
simulations of nonlinear chains since both a small amount of added vorticity and nonlin-
ear coupling of spring force act to rotate the chétig. 11).

We also find the cross-correlation function to be asymmetric in shear(fiayv 10).
This is a signature of the nonzero vorticity in the flow. For purely extensional flow, the
cross-correlation function is symmetric while for purely vortical flow the cross-
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(Wi = 10) for various values of mixed flow parameter« = 0 for shear floy. A minute amount of added
vorticity to shear flow results in negative valleys as in nonlinear spring models.

correlation function is antisymmetric. A high positive correlation at a small positive time
is due to the vortical component of the flow. For example, a large vali® eft a given

time leads to a large value iR; at slightly later time resulting in @ maximum in the
crosscorrelation at a small positive time. The location of the negative valley at positive
time is further removed from zero time than the location of the negative valley at nega-
tive time. This follows since the stretching cycler thinning cycle¢ occurs more slowly
than the collapsing cycléor thickening cyclg due to the opposing effect of the spring
force to the convection during the stretching cycle.

C. Chain crosscorrelations in thin gap flows

As discussed in Sec. Il A, chain confinement decreases the characteristic time scale
governing chain tumbling dynamics. The time interval between the two negative valleys
decreases as the gap width decreases as shown in Fig. 12. We also find the magnitude of
the negative valley decreases under confinement\WAsincreases, the effect of the
confining walls on chain deformation becomes smaller than the effect of flow strength
and the difference between the crosscorrelation for bulk flows and the thin gap flows
becomes smaller. On the other hand, the confinement effect is most strongly felt for small
Wi since the configuration space of the chains is thicker in the flow gradient direction
(i.e., 55 is large) and therefore they interact more with the walls.\Wi = 1 the wall
decorrelatefR; andR, and suppresses the tumbling dynamics greatly reducing the chain
extension in the flow direction.

IV. RELAXATION TIMES

It is also instructive to study the effect of confinement on the chain relaxation time in
the thin gap. In 3D bulk problems, the relaxation time is isotropic since there is no
preferred direction at equilibrium. But in a confined geometry, this symmetry is broken
by the introduction of confining walls and one obtains different relaxation times for chain
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FIG. 12. The normalized cross-correlation function fofDNA chains under confinementi(= 0.58Rg) at
variousWi.

deformation in different directions. For example, for flexible polymers, the longest relax-
ation time in the 3D bulk flow is given as; = ¢N?/2m2Hgp,, whereé is the drag on a
given beadN is the number of beads, aitkyis the spring constarBird et al. (1987)].
However, in the confined geometry, as shown in Paitld, is different in different
directions and the corresponding relaxation times differ from the bulk valuéiere we
denote the relaxation time in the directiparallel to the confining wallsXz plang as 7
and the relaxation time in the directiperpendicularto the confining wallgy-coordinate
direction as 7 .

Shown in Fig. 18) is the relaxation time obtained from the autocorrelation of the
shear stress as a function of gap width. The relaxation time is obtained by fitting the
linear portion of the log plot of relaxation modul@(t) given by

Gp(t) = <7f<)y(t) 7J)?y(0»eqa (10

where(*)qq represents the ensemble average with no flow.

As the gap width decreases, the relaxation time associated with the shear rheology and
chain dynamics decreases from its bulk value to zero. This relaxation time is closely
related tor;, and its behavior can be understood in terms of the spring force in the
directionperpendicularto the confining wallsF |, . As mentioned in Sec. Il of Part |, as
the gap width decreases, increases. Since the relaxation time scales as the inverse of
the force,r, decreases as gap width decreases. The tumbling motion occursxy the
plane, and the relevant relaxation time is that obtained from the auto correlation of shear
stresstyy . Therefore, at a given shear rate, as the gap width decreases, the relaxation
time decreases and the effectW& decreases resulting in smaller chain deformations and
extensions at a given flow strength. Rescaling the relaxation time of the PSD with the thin
gap relaxation timer; instead of the bulk relaxation time, we obtain a perfect overlap
between the thin gap PSD at gap width= 2Rg andWi = 10 (which corresponds to
wief = 2.23 due to the reduction in; ) and the bulk PSD awi = 2.23 (Fig. 7). A
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FIG. 13. The anisotropic relaxation times in confined geometry with and without wall HI is compared to the
relaxation time based on uncorrected 3D force lawand 7, correspond to chain relaxation times parallel and
perpendicular to the confining walls, respectively.

decrease in the relaxation time due to the confinement has also been observed for a
suspension of rigid Brownian rod$chiek and Shaqfeti995].

Alternatively one can explain the decrease in relaxation time in terms of loss of
configurational space under confineméBthiek and Shagfekl995]. We define the
configurational space volume as the product of three characteristic dimensions of the
chain configurational space in each Cartesian coordinate in the absence of flow

V = 816,03, (11)
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[EN_ (R")?
5= # (12)

In the absence of the confining walls, the chain segments reside in a spherical coiled
volume VSP"ee4t equilibrium. As the walls are brought in contact with the chain, the
chain is compressed in the direction perpendicular to the confining walls and swells in the
direction parallel to the walls. The new volum¥%? now occupied by the chain is
greatly reduced compared to the 3D bulk configurational space. As a general rule of
thumb, the greater the reduction in configurational space, the greater the change in relax-
ation time and the force law. In Fig. 3 we compare our estimate of the relaxation time
from the ratio of the configurational spac¥%7VSPNe'§ to the relaxation timer,
obtained from the Brownian dynamics simulation of zero-shear stress auto correlation
function [Eq. (10)] and a strong correlation is obtained. Also shown in Fig. 3 is the
relative effective viscosity(neﬁ— n9)lns] at low Wi (Wi = 1). Under extreme confine-
ment H < Rg), as discussed in Sec. Il B the flow cannot further deform the polymer
chain relative to its equilibrium deformed conformation, hence, over a Mfgeange,
the effective viscosity is independent @i and is closely related to the zero shear
viscosity of the chain(Fig. 1). Since the zero shear viscosity is proportional to the
relaxation time,neﬁ— 775 Scales as the relaxation time . Therefore, the configurational
volume can serve as a good estimate of the relaxation timand the relative effective
viscosity in thin gaps.

On the other hand, for the case of relaxation from an elongated (&&terelaxation
parallel to the walls as in the experiment by Bakajiet al. (1998 where a chain
is hooked on a post and elongated and subsequently allowed to relax, the relaxation
time 7; can be determined from the decay of the normal stress differéices 74y
—1yy = Txx. For small deformationszyy can be approximated Uyspl_f, wherelL q is
the extension of the chain in thedirection (i.e., the direction in which the chain was
originally elongatefiandHg is the spring constant. In this case, unlike, 7 increases
due to confinement as shown in Fig.(kB8 As the chain retracts from its elongated high
stress state to a coiled lower stress state, it bumps into the confining walls which impede
the relaxation process resulting in larger relaxation times. In terms of the effective spring
force law, the walls make the chains swell in the confinement plane exerting a force
pushing the chains further away from equilibrium, resulting in a smaller effective restor-
ing force. Therefore, confinement decreases the effective spring force in the direction
parallel to the confining wallsH;) and its corresponding relaxation time increases.

It should be noted that good agreement forbetween the bead-spring modi&r an
inverse langevin chaifiLC) and the corresponding bead-rod model with the same num-
ber of Kuhn stepd is obtained Fig. 13b)]. When the wall Hl is includeds, increases
approximately 50%4Fig. 13a)] while 7, increases by a factor of 2. Thus, in order to
capture the physics correctly, it is crucial to include the effect of wall HI.

where §; is given by

V. HYDRODYNAMIC INTERACTIONS WITH THE WALL

In Part | we have shown the importance wéll HI for chain relaxation from an
extended state in confined geometries. In this section we study its effect on chain tum-
bling dynamics. For the tumbling dynamics of chains in shear and Poiseuille flow, there
is a coupling of Brownian motion in the flow gradient direction and the convection in the
flow direction. The drag coefficients are different in directions parallel and perpendicular
to the wall as shown in Sec. V of Part I. To guide our understanding of chain dynamics
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FIG. 14. PSD for 15 spring ILC corresponding dephage DNA (N = 150).

in thin gaps, we again use the Hookean dumbbell model to obtain an analytical expres-
sion for the PSD of a chain in shear flow wilhisotropicdrag. In this context, Huet al.

(2000 showed that the qualitative behavior of the chain tumbling dynamics for nonlinear
bead-spring models could be captured successfully using the linear Hookean dumbbell
model. In the Fourier space, the equatief(») for a Hookean dumbbell with aniso-
tropic drag can be written as

. F'(w) F3'(w)yB
Ry(w) = 11 + : 2 l , (13
5(27—”’@) §BL(27__iw:8L)(27__iw:8|)

whereR;(w) andFiBr(w) are the Fourier transform of the Hookean dumbbell length and
Brownian force on the bead in thidh coordinate direction, respectivefg ¢ andg, ¢ are

the anisotropic drag coefficients in directions parallel and perpendicular to the walls,
respectively. For the case @, = B, = 1, we recover the isotropic drag result. To
simplify our analysis, we assume the drag coefficients are constant over the gap width
and thus use the weighted average drag coefficients froni2#gin Part I. Then from

Eq. (13), we obtain the PSD for the Hookean dumbbell with an anisotropic drag

16kT(B)) L AWEBL B
3 1+(27(B))w)? 1+(27(B, Yw)?|
Clearly as the confining walls are brought together, the drag coefficient increases due
to hydrodynamic interaction with the wall. Hence, the PSD increases in comparison to
the PSD without wall HI especially in the low frequency regime compared to the PSD
without the wall HI. This is confirmed in our simulation as shown in Fig. 14, where we
compare the PSDs of a bead-spring chain with and without the wall H-filtage DNA
at gap width of ZRg. On the other hand if we compare the PSD for a chain using the 3D
spring force law to the PSD using the thin gap force law, the PSD for a chain with the 3D

1

PSOw) = (14
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spring force law is larger than that of the thin gap. Therefore, the use of the incorrect 3D
force law overpredicts the PSD, while neglecting the wall HI underpredicts the PSD.
Hence, a comparison of the PSD of the correct thin gap force law with wall HI to the
PSD of incorrect 3D force law without wall HI, shows a reasonable agreement due to
cancellation of errorgFig. 14). It should be noted that the favorable comparison is only
coincidental. In fact, as shown in Part I, the relaxation of a chain from a stretched state
can only be captured when both the correct spring force law and the wall HI are taken
into consideration.

The expression inside the second bragkeétof Eq. (14) suggests that/( 8, }{B)Wi
is the effective flow strength induced loyag increase Note that in derivation of Eq.
(14), we did not take the modification of the spring force in thin gaps into account.
Therefore, in general, the effective flow strength for thin gap flows can be defined as
wieff = V(BB (7L I Tpui) Wi. The termr, /[y, accounts for the modification of

spring force laws in thin gaps and the temﬁﬁﬁ(ﬂn) accounts for the increase in drag.
Since (B, ){B) is always greater than unity, the dumbbell experiences a higher effec-
tive deformation at a given flow strength. Therefore, at large gap wigthere | / 7k

is nearly unity, due to the increase in drag on the chain, the effective viscesitywall

HI lies below the curve for the effective viscositithoutHI due to shear-thinning effects

at a higher effective shear rafeig. 15. But at smaller gap widths, the chain relaxation
time (7, ) decreases significantly, therefore, we have very small effective flow strength at
small gap widths. As shown in Sec. II B, the flow has very little effect on chain defor-
mation beyond the deformation caused by confinement, thus, the effective viscosity is not
a function of Wi and the effective viscosities at differeMti overlap. The effective
viscosity with wall HI is slightly above the curve for the effective viscosity without the
wall HI due to the termy(B, ){B;) which makes the DNA solution more viscous.
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VI. CONCLUSIONS

In this study we have investigated the chain dynamics and the rheology of dilute DNA
solutions in the presence of confining walls using both bead-rod and bead-spring models.
We solved the self-consistent momentum equation that takes the effect of chain deforma-
tion on the flow velocity into account. Near the wall there is a depletion layer where the
velocity, the chain density and the force density change rapidly over the length scale of
the chain. Though the size of the dispersion layer is small, its effect is felt even beyond
a gap width of 20Rg. For small gap widthsH < Rg), the effective viscosity is only a
function of gap width and is independent of flow strength. Therefore, the effective vis-
cosity can be expressed in terms of the relaxation time obtained from the zero-shear stress
autocorrelation, or configurational space volume estimate. For large channel sizes, the
rheology of the confined system can be characterized in terms of its bulk properties such
as the polymeric viscosity,® and the dispersion layer thickne8g and neﬁ— nb“"‘ was
found to scale a¥Vi~3/4/H for flexible polymers.

We have also investigated the tumbling motion of the chain via the PSD. The wall
affects the coupling between the convective motion and the Brownian fluctuation appre-
ciably, resulting in a slower tumbling motion of the chain as compared to tumbling
motion in the bulk. Such a change in chain dynamics under confinement is linked to a
reduction of the effective chain relaxation time, which results in smaller chain deforma-
tion at a given shear rate. Though chains undergo very different tumbling motions in
Poiseuille and shear flow, on average the chains undergo the same degree of tumbling
motion when compared at the appropriately chosen flow strefgth the gap averaged
shear ratg We have also further elucidated the mechanism of chain tumbling motion via
examining the cross-correlation function. In shear flow, chains undergo a continuous
cycle of thinning and thickening of the dispersion layer in the gradient direction. This
results in negative valleys in the cross-correlation function and these are a signature of
the nonlinear coupling of the force, i.e., the negative valleys are not captured by linear or
pre-averaged nonlinear chain models.

Though the relaxation time associated with tumbling motion decreases under confine-
ment, the relaxation time associated with the relaxation of chain length from an extended
state increases. This is closely related to the symmetry breaking of the force under
confinement. In the tumbling dynamics, the chains undergo tumbling motion in the plane
perpendicular to the walls and therefore confinement results in faster dynamics due to an
increase in the force perpendicular to the confining walls. On the other hand, for the
relaxation of a chain from an extended state, the chains retract to their coiled state in the
plane parallel to the confining walls. The spring force in this plane is lowered by con-
finement and therefore the relaxation process is slower.
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