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The membrane-ionomer interface is the critical interlink of the electrodes and catalyst to the polymer
electrolyte membrane (PEM); together forming the membrane electrode assembly in current state-
of-the-art PEM fuel cells. In this paper, proton conduction through the interface is investigated to
understand its effect on the performance of a PEM fuel cell. The water containing domains at this
interface were modeled as cylindrical pores/channels with the anionic groups (i.e., –SO3

−) assumed
to be fixed on the pore wall. The interactions of each species with all other species and an applied ex-
ternal field were examined. Molecular-based interaction potential energies were computed in a small
test element of the pore and were scaled up in terms of macroscopic variables. Evolution equations
of the density and momentum of the species (water molecules and hydronium ions) were derived
within a framework of nonequilibrium thermodynamics. The resulting evolution equations for the
species were solved analytically using an order-of-magnitude analysis to obtain an expression for the
proton conductivity. Results show that the conductivity increases with increasing water content and
pore radius, and strongly depends on the separation distance between the sulfonate groups and their
distribution on the pore wall. It was also determined that the conductivity of two similar pores of
different radii in series is limited by the pore with the smaller radius. © 2013 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4789960]

I. INTRODUCTION

Polymer electrolyte membrane (PEM) fuel cells are an
efficient alternative source of clean energy for long-term
consumption. An essential component controlling the per-
formance of a PEM fuel cell is the membrane electrode
assembly (MEA), which is a combination of electrodes, cata-
lysts, ionomer, and membrane. Hydrogen gas is commonly
used as the fuel and is oxidized at the platinum catalyst
on the anode, thus generating protons and electrons. The
electrons move through an external circuit and hydrated
protons move through the ionomer and membrane. The
transport of protons is strongly dependent on the hydrated
morphology of the PEM, and so the exact nature of this
morphology is an essential characteristic to be considered in
the design of high performance ionomers for commercializa-
tion. Having passed through the membrane, the protons react
with the electrons and oxygen gas, introduced on the cath-
ode side, producing water, which is the only byproduct of the
device.

The MEA may be constructed in various ways. In the
glue method,1 an ionomer ink, which is a solution of ionomer
and Pt/carbon catalyst, is used to facilitate good interfacial
contact between the electrodes and electrolyte. The mem-
brane is sandwiched between the electrodes and pressed,
bringing about changes in the morphology and proton con-
ductivity of the membrane at the interfaces on both sides
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of the membrane. Both the membrane and interface proper-
ties dictate the overall conductivity of protons through the
MEA. For example, it has been observed that a thicker mem-
brane can cause an interfacial delamination under freeze/thaw
cycles.2 Furthermore, due to delamination, interfacial resis-
tance increases and proton conductivity decreases.3 Hence,
the study of proton transport through the interfacial regions,
not simply through the membrane alone, is critical to ob-
taining insight into the overall proton conductivity of a PEM
fuel cell; however, no models for transport through the in-
terfacial region of the MEA have been presented in the
literature.

The interface formed in a MEA, made with a Nafion so-
lution on a Nafion membrane, typically behaves in a simi-
lar manner as the membrane; however, the pores in the in-
terfacial region are more permanent, being less affected by
factors such as temperature or membrane water content. A
number of studies have investigated the transport of species
through perfluorosulfonic acid membranes, but modeling of
the transport through the interface has largely been over-
looked. Presently available macroscopic transport models4

can primarily be divided into three categories: hydraulic;5

diffusion;6 and binary friction,7 including modifications8, 9 of
the dusty gas models.10 Microscopic or molecular-level mod-
els include classical molecular dynamics simulations11 and a
kinetic model based on statistical mechanics.12, 13 The model
developed in the present work is based on this nonequilib-
rium statistical mechanical model. Some continuum models
have also been developed that are used to describe transport
within the microscopic pores of the membrane.14, 15
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In the model developed herein, we have assumed that
the Nafion membrane-ionomer interface is a collection of
cylindrical pores. The structure of the pore is taken as
assumed by Paddison et al.12 The negative charges (sulfonate
ions) are uniformly distributed on the wall of the pore. The
pore is filled with water, and there is no water-density vari-
ation. The flux of water within the pore is zero. The veloc-
ity and density of hydronium ions are fixed at the entrance
of the pore. The interaction potential energies between hydro-
nium ion–hydronium ion, water–water, hydronium ion–water,
sulfonate–hydronium ion, and sulfonate–water are estimated
by appropriate methods mentioned in the literature. These in-
teraction potential energies were scaled up to the macroscopic
interaction potential energies for a small test element of the
pore, and the macroscale Hamiltonian in the element was
determined. Continuum transport equations for density and
velocity of the species were derived using the Hamiltonian
via nonequilibrium thermodynamics modeling.16 These equa-
tions were converted into non-dimensional form and solved
analytically for density and velocity variations of the hydro-
nium ions within the pore using an order-of-magnitude analy-
sis. An expression for proton conductivity was derived using
the current density in the pore under an applied external elec-
tric field.

Realistically, the pores within the membrane and inter-
facial regions are not cylindrical tubes by any means. How-
ever, reasonable estimates of the dimensions of the water con-
taining regions in hydrated PEMs have been obtained with
small angle x-ray scattering (SAXS) and from these measure-
ments one may estimate average pore diameter as a function
of hydration.17 Furthermore, the sulfonate groups attached to
the membrane material are not likely to be uniformly arranged
along the channels formed within the membrane and inter-
face; however a number of them will be correlated with the
membrane equivalent weight (EW). Nevertheless, for a given
membrane of specified EW, a cylindrical tube with uniformly
distributed charges should constitute an excellent model for
examining the effects of sulfonate distribution, water content,
tube size, etc. on proton transport through a typical membrane
pore, and to accurately approximate macroscopic transport
properties, such as the overall MEA conductivity.

This paper is divided into three major sections.
Section II consists of the derivation of all macroscopic inter-
action potential energies in a pore element under appropri-
ate assumptions, along with the derivation of the evolution
equations for density and velocity of the species in the pore.
This section also includes the analytic solution of these evo-
lution equations, subject to appropriate boundary conditions.
The values of various pore and material parameters, includ-
ing pore radius, water content, number of sulfonate groups,
and proton diffusion coefficient of the pore, have also been
incorporated. This section includes a brief comparison of
the model with other models from the literature. The varia-
tion of the proton conductivity with respect to pore radius,
separation distance between sulfonate groups, and distribu-
tion of sulfonate groups along the pore wall is presented in
Sec. III. This section also provides an expression for interfa-
cial conductivity. The primary conclusions are discussed in
Sec. IV.
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FIG. 1. Interaction of a species, α, with charges on the ith line of a cylinder
of length L and radius R. Lz and Lr are the separation distances between two
consecutive rings of charges on the axial length and between two consecutive
charges in the ring, respectively. The species α is at a radial distance r and is
at angle θ i from the ith line charge. rrθ ,i is the distance of the species from
the line charge and is equal to (R2 + r2 − 2Rr cos (θ i))1/2, where r = [0, R],
θ i = [0, 2π ].

II. MATHEMATICAL MODELING

A. Macroscopic potential energies

The densities of the hydronium ions and water molecules
are assumed to vary only in the z direction within the pore;
hence, the interaction potential energies are functions of the z
direction only. Note, however, that we will express most equa-
tions in general form in terms of an arbitrary coordinate sys-
tem x, and then reduce the final equations accordingly later
on. Hydronium ions and water molecules move through the
pore of a membrane/interface experiencing an electric field
due to negatively charged sulfonate anions (−SO3

−) located
at the termini of the side-chains. A pore was modeled as a
cylindrical tube, as displayed in Fig. 1. The pore has radius R
and length L. Approximate values of these quantities can be
estimated from SAXS experiments.17 The lines of charges on
the wall are assumed to form NL = N′

L + 1 rings of sulfonate
groups, and each ring has Nc sulfonate groups. The separa-
tion distance between two consecutive rings is Lz (=L/N′

L).
Thus, N′

L is defined as the number of segments along the ax-
ial length. The equivalent weight of a particular membrane
material provides an estimate of the number of charges within
a cylinder of specific dimensions. Although these groups are
not likely to be arranged symmetrically within the tubes, nor
the pores even cylindrical, the above approximations should
allow realistic calculations of membrane-ionomer interfacial
transport properties to be obtained.

To calculate the above mentioned interaction potential
energies at the continuum level, we focus on a small element
of the tube of length Lz at a distance of z from the left end of
the tube (Fig. 1). We begin by assuming that the water con-
tent of the interface is λ, which is defined as the number of
water molecules per sulfonic acid group. If the interface is
sufficiently hydrated, all sulfonic acid groups will dissociate
their protons to the water molecules forming hydronium ions.
Thus, the number of hydronium ions within the pore element
is equal to the number of sulfonate groups, Nc, and is related
to the macroscopic number density of the hydronium ions at
any point x within the pore element, ρα(x), as

∫ ∫ ∫
ρα(x)dx

= Nc. The mass density is thus defined as ρm,α = ραMα/NA,
where Mα is the molar mass and NA is Avogadro’s number.

The number of water molecules is Nc × (λ − 1)
within the pore element (the remainder of the Nc × λ water
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molecules is associated with hydronium ions). The total num-
ber of water molecules in the pore is related to the macro-
scopic number density of water molecules at any point x in
the pore element, ρs(x), as

∫ ∫ ∫
ρs(x)dx = Nc × (λ − 1). The

mass density of water, ρm, s, is defined analogously to that of
the hydronium ions.

A dissociated proton is assumed to exist as a hydro-
nium ion and is free to interact with hydronium ions or wa-
ter molecules within the pore, as well as with the sulfonate
groups distributed along the pore wall. The point charge, q2,
on the wall of the pore may be expressed in terms of the
surface charge density, �s, according to 2πRL�s

NLNc
. The charge

of a hydronium ion is F
NA

. The macroscopic potential en-
ergies used in the interfacial transport model are developed
in terms of previously utilized microscopic potential energy
expressions12 and are summarized in Appendix A.

1. Sulfonate–hydronium ion interaction

The potential energy in the pore is assumed to only
vary in the z-direction as shown in Eq. (A4); and hence, the
sulfonate–hydronium ion potential energy is a function of z
only. The modified Bessel function, K0, and the term in the
logarithm of Eq. (A4) are functions of (r, θ ). We can eliminate
the dependency on r and θ by integrating over the appropriate
range of (r, θ ); i.e., effectively averaging them over the pore’s
cross-sectional area. Thus, the total interaction potential en-
ergy, Vpα , of the hydronium ions with the sulfonate groups
within the pore element is

Vpα = q1q2N
′
L

πεL

∫∫∫
ρα

(
K(Nc,R,Lz)

× cos
(

2πN ′
L

z

L

)
− a(R)

)
dx

=
∫∫∫

ρm,α

�s

ε

F

Mα

2R

Nc

N ′
L

NL

(
K(Nc,R,Lz)

× cos
(

2πN ′
L

z

L

)
− a(R)

)
dx, (1)

where K(Nc,R,Lz) = Nc

πR2

∫ R

0

∫ 2π

0 K0(2π rrθ

Lz
)dθrdr and

a(R) = Nc

2πR2

∫ R

0

∫ 2π

0 ln(rrθ )dθrdr.

2. Sulfonate–water interaction

The variation of the electric field due to the sulfonate
groups is in the z direction and the dipole moment of the water
molecules is oriented in the direction of the field. The electric
field and total potential energy of the water molecules in the
element is therefore expressed in terms of macroscopic vari-
ables according to

Ep(x) = −
∂

(
Vpα

ρm,α

Mα

F

)
∂z

= �s

ε

4πRN ′
L

NcL

N ′
L

NL

K(Nc,R,Lz) sin
(

2πN ′
L

z

L

)

and

Vps = −
∫∫∫

NsμEp(x)dx = −
∫∫∫

Nc(λ − 1)μEp(x)dx

= −
∫∫∫

ρm,s

NA

Ms

μEp(x)dx, (2)

where Ep(x) is the electric field at position x in the pore ele-
ment, Vps is the total potential energy in the pore element, μ

is the dipole moment of a water molecule, and Ns is the to-
tal number of water molecules in the pore element, which is
equal to Nc × (λ − 1).

3. Hydronium ion–hydronium ion interaction

The hydronium ions are assumed to be distributed ran-
domly in the element of the pore. Nc hydronium ions consti-
tute Nc(Nc−1)

2 pairs in the pore element. The average potential
energy of a pair (e.g., i and j) of hydronium ions depends on
the separation distance between them; i.e.,|rαi

− rαj
| (given

in Eq. (A5)). The total interaction potential energy of hydro-
nium ions, Vαα , within the pore element is derived from the
average potential energy of a pair and is expressed in terms of
macroscopic variables as

Vαα =
Nc∑

i>j=1

q2
1

4πε|rαi
− rαj

|

= Nc(Nc − 1)q2
1

8πε

(
1

|rαi
− rαj

|
)

average

= Nc(Nc − 1)q2
1

8πε
bαα

≈
∫∫∫

ρ2
m,αR2Lz

8ε

(
F

Mα

)2

bααdx, (3)

where bαα = ( 1
|rαi

−rαj
| )average. Further details concerning this

transformation can be found in the dissertation of Kumar.18

4. Hydronium ion–water molecule interaction

The total potential energy, Vαs , within the pore element
due to the hydronium ion–water interaction, using Eq. (A7),
is expressed in terms of macroscopic variables ρm,α and ρm,s

as

Vαs = −
Nc,Ns∑
α,i=1

μ2q2
1

48π2ε2kBT |rα − rs |4

= − μ2q2
1Nc

48π2ε2kBT

Ns∑
i=1

1

|rα − rs |4

≈ − μ2q2
1NcNs

48π2ε2kBT

(
1

|rα − rs |4
)

average

= −
∫∫∫

ρm,αρm,s

NA

MαMs

R2Lzμ
2F 2

48πε2RgT
bαsdx, (4)

where bαs = ( 1
|rα−rs |4 )average and the reader is again referred to

Ref. 18.
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5. Water–water interaction

There are Ns (Ns−1)
2 pairs of water molecules within the

pore element. The average potential energy of a pair of water
molecules depends on the separation distance between them;
i.e., |rsi

− rsj
|, as given by Eq. (A6). The total interaction po-

tential energy of water molecules, Vss, in the pore element is
derived from the average potential energy of a pair as

Vss = −
Ns∑

i>j=1

2μ4

3(4πε)2kBT |ri − rj |6

= −μ4Ns(Ns − 1)

48π2ε2kBT

(
1

|rs1 − rs2 |6
)

average

≈ −
∫∫∫

ρ2
m,s

N3
A

M2
s

μ4R2Lz

48πε2RgT
bssdx, (5)

where bss = ( 1
|rsi

−rsj
|6 )average.

6. Interaction with the external electric field

The external field, Eext(x), is applied in the z direction, as
described by Qiao and Aluru.19 The potential energy due to
this applied external field at any point inside the pore may be
written in terms of the macroscopic variables as

Vext,α =
∫∫∫

ρm,α

F

Mα

Vext (x)dx,

Vext,s = −
∫∫∫

ρm,s

NA

Ms

μEext (x)dx, (6)

where Vext (x) is the applied potential and Vext,α and Vext,s are
the total potential energies of the hydronium ions and water
molecules, respectively, in the pore element due to the exter-
nal electric field.

B. Formulation of the generalized chemical potentials
of the species

The Hamiltonian in the pore element is expressed as the
sum of the kinetic energies of the species in the pore and their
macroscopic interaction potential energies according to

H [ρm,α, ρm,s, 
α, 
s]

=
∫∫∫ (

1

2


2
α

ρm,α

+ 1

2


2
s

ρm,s

)
dx

+Vαα(ρm,α) + Vαs(ρm,α, ρm,s) + Vss(ρm,s)

+Vpα(ρm,α) + Vps( ρm,s) + Vext,α(ρm,α) + Vext,s(ρm,s).

(7)

The momentum density of a species i is related to the mass
density and velocity of the species, ui, by 
i(x) = ρm,i(x)
ui(x). The generalized chemical potential of each species, μ

g

i ,
and its functional derivatives can be deduced from the above

expression for the Hamiltonian16

μg
α = δH

δρm,α

= −u2
α

2
+ ρm,αR2LF 2bαα

4M2
αεN ′

L

− ρm,sNAR2Lμ2F 2bαs

48MsMαπε2RgT N ′
L

+�s

ε

F

Mα

2R

Nc

N ′
L

NL

(
K(Nc,R,Lz)

× cos
(

2πN ′
L

z

L

)
− a(R)

)
+ FVext

Mα

, (8)

μg
s = δH

δρm,s

= −u2
s

2
− ρm,αNAR2Lμ2F 2bαs

48MαMsπε2RgT N ′
L

− ρm,sμ
4R2LN3

Abss

24M2
s πε2RgT N ′

L

−�sμ

ε

NA4πN ′
LR

MsNcL

N ′
L

NL

K(Nc,R,Lz) sin
(

2πN ′
L

z

L

)

−NAμEext,z

Ms

. (9)

C. Derivation of the evolution equations via
nonequilibrium thermodynamics

The derivation of the equations of motion
uses the bracket methodology of nonequilibrium
thermodynamics.16, 20 This methodology allows the con-
sistent, physical derivation of equations of motion for
complicated systems wherein many different physical pro-
cesses are interacting by employing a rigorous mathematical
framework common to all dynamical phenomena. This
structure is embedded into two complementary bracket
structures: the Poisson bracket of traditional classical me-
chanics, accounting for conservative, reversible processes,
and the dissipation bracket, which accounts for irreversible
phenomena. The structure of these brackets ensures that all
required thermodynamic principles are incorporated into the
final set of evolution equations for the system variables, while
maintaining the integrity of the physical interactions between
multiple dynamical system processes.16

For the present case, we assume constant temperature
and define the relevant Poisson and dissipation brackets for
a two-component system expressed in terms of an arbitrary
functional of the system variables, F, and the Hamiltonian,
Eq. (7), as16

{F,H } = −
2∑

i=1

∫∫∫ [
δF

δρm,i

∇ ·
(

δH

δui

ρm,i

)

− δH

δρi

∇ ·
(

δF

δui

ρm,i

)]
dx

−
2∑

i=1

[ ∫∫∫
δF

δui

∇ ·
(

δH

δui

ui

)

− δH

δui

∇ ·
(

δF

δui

ui

) ]
dx, (10)
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[F,H ] = −
2∑

i=1

∫∫∫
κi

[
∇

(
δF

δui

)
: ∇

(
δH

δui

)

+∇
(

δH

δui

)
: ∇

(
δF

δui

) ]
dx

−
2∑

i=1

∫∫∫
Dμi

∇
(

δF

δρm,i

)
· ∇

(
δH

δρm,i

)
dx, (11)

where i is either α or s and the ∇ represents the gradient oper-
ator. In these expressions, H is the Hamiltonian of Eq. (7) and
F is an arbitrary functional of the same variables as H. The
symbols Dμi

and κ i relate to the diffusivities of the species
and their viscosities, respectively, as defined in Subsection II
D. The equations of motion for the problem variables are then
obtained from the dynamical equation of change for the func-
tional, F, expressed as

dF

dt
= {F,H } + [F,H ]. (12)

The equations of change for the system variables can then be
derived from this expression as Eq. (13). The details of this
derivation are provided in the dissertation of Kumar.18

D. Transport of hydronium ions and water molecules

In this work, we consider transport in the z direction only.
Hence, the full system of evolution equations in 3-dimensions
(which may be found in Ref. 18) reduce to four coupled equa-
tions for mass and momentum transport of the species based
on their chemical potentials:

∂ρm,i

∂t
= −∂(uiρm,i)

∂z
+ Dμi

∂2μ
g

i

∂z2

ρm,i

∂ui

∂t
= −ρm,iui,z

∂ui

∂z
− ρm,i

∂μi

∂z
+ η

∂2ui

∂z2
, (13)

where ui is the velocity component in the z direction of species
i. The generalized chemical potentials of the species, μ

g

i , are
defined by Eqs. (8) and (9) and are equal to μi − 1

2u2
i , where

μi is the chemical potential of the species i. The symbols Dμi

and κ i represent the diffusivities of the species and their vis-
cosities, respectively. (Note: 2κα = 2κs = η, the viscosity of
water.)

Dμi
is the diffusion coefficient based on the chemical po-

tential of the species. This can be related to the diffusion co-
efficient based on the number density (Dρi

) of the species by

Dμi
= Dρi

Mi ρ̄m,i

RgT
, where ρ̄m,i is the average mass density of

the species in the pore. Whereas Dρi
is an implicit function of

the concentration of the species and varies inversely to ρ̄m,i ,
21

Dρi
ρ̄m,i can be assumed constant, which implies Dμi

is also a
constant at a specified temperature. The mass densities of the
species, ρm,i, are used to derive their number densities accord-
ing to ρi = ρm,i

Mi
NA. Equations (13) can be rewritten in terms

of the number densities of the species as

∂ρi

∂t
= −∂(uiρi)

∂z
+ Dρi

Mi

RgT
ρ̄i

∂2μ
g

i

∂z2

ρi

∂ui

∂t
= −ρiui

∂ui

∂z
− ρi

∂μ
g

i

∂z
+ ηNA

Mi

∂2ui

∂z2
. (14)

The chemical potentials and their derivatives are substi-
tuted into the above equations and rendered dimensionless us-
ing to following definitions: t̃ = tVav

L
, z̃ = z

L
, ũi = ui

Vav
, and

ρ̃i = ρi

ρ̄i
, where Vav is the average velocity of the species if

the surface charge on the pore wall is zero and ρ̄i is the av-
erage number density of species i in the pore. The resulting
transport equations (number density and velocity) for the hy-
dronium ions are

∂ρ̃α

∂t̃
= −∂(ũαρ̃α)

∂z̃
− Diα

[
ũα

∂2ũα

∂z̃2
+

(
∂ũα

∂z̃

)2
]

+DiαHhα

∂2ρ̃α

∂z̃2
+ DiαHyα

∂2ρ̃s

∂z̃2

−DiαMeα(πN ′
L)K(Nc,R,Lz) cos(2πN ′

Lz̃), (15)

Reαρ̃α

∂ũα

∂t̃
= −Reαρ̃αũα

∂ũα

∂z̃
− ReαHhαρ̃α

∂ρ̃α

∂z̃

−ReαHyαρ̃α

∂ρ̃s

∂z̃

+ ReαMeα

2
ρ̃αK(Nc,R,Lz) sin(2πN ′

Lz̃)

+ReαEnαρ̃α + d

L

∂2ũα

∂z̃2
, (16)

where Diα = Dρα Mα

RgT

Vav

L
, Hhα = ρ̄αR2LF 2bαα

4MαNAVav
2εN ′

L

, Hyα

=− ρ̄sR
2Lμ2F 2bαs

48Mαπε2RgT N ′
LVav

2 , Meα = �sRF

MαεVav
2 ( 8πN ′2

L

NcNL
), Reα = ρ̄αMαdVav

ηNA
,

Enα = FEextL

MαVav
2 , and d is the diameter of the tube. Similarly,

the transport equations (number density and velocity) for the
water molecules are

∂ρ̃s

∂ t̃
= −∂(ũs ρ̃s)

∂z̃
− Dis

[
ũs

∂2ũs

∂z̃2
+

(
∂ũs

∂z̃

)2
]

+DisHys

∂2ρ̃α

∂z̃2
+ DisWas

∂2ρ̃s

∂z̃2

+DisMes(2π2N ′
L

2)K(Nc,R,Lz) sin(2πN ′
Lz̃),

(17)

Resρ̃s

∂ũs

∂ t̃
= −Resρ̃s ũs

∂ũs

∂z̃
− ResHysρ̃s

∂ρ̃α

∂z̃

−ResWasρ̃s

∂ρ̃s

∂z̃

+ResMes(πN ′
L)ρ̃sK(Nc,R,Lz) cos(2πN ′

Lz̃)

+ d

L

∂2ũs

∂z̃2
, (18)

where Dis = Dρs Ms

RgT

Vav

L
, Hys = − ρ̄αR2Lμ2F 2bαs

48Msπε2RgT N ′
LVav

2 ,

Was = − ρ̄sR
2LN2

Aμ4bss

24Msπε2RgT N ′
LVav

2 , Mes = �sRμNA

MsεVav
2L

( 8πN ′2
L

NcNL
), and

Res = ρ̄sMsdVav

ηNA
.

The dimensionless groups appearing above are ratios of
the relative strengths of the various forces acting within the
system. For example, Rei is the familiar Reynolds number
of fluid mechanics, which represents the ratio of inertial to
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viscous forces. The reader is referred to the dissertation of Ku-
mar for further details.18 Altogether, these equations describe
the variations of the species densities and velocities (averaged
over the pore area) along the length of the pore, which can be
used to calculate the flux and the proton conductivity within
the pore.

E. Analytical solution of the transport equations

The interface is very thin compared to the membrane and
hence we assume that the density of water molecules is uni-
form along the pore length (ρ̃s = constant) and that the water
is stationary at the continuum level (ũs = 0). The above trans-
port equations for hydronium ions were solved analytically
at steady state using an order-of-magnitude analysis. The ap-
proximation of the terms in the transport equations was per-
formed by using the appropriate values of the dimensionless
groups and physical constants, as determined by experiment
and fundamental theory, as well as by evaluating and com-
paring the relative values of the dimensionless groups. The
values of all parameters and constants used in the model are
summarized in Appendix B.

1. Density variation within the pore

The magnitude of all terms in the transport equations can
be estimated by using the values of the dimensionless param-
eters Diα , Hhα , Hyα , Meα , Reα , and Enα . At steady state, the
first and second terms on the right side of Eq. (15) are neg-
ligible in magnitude in comparison to the rest of the terms.
The density of water is assumed to be constant; i.e., the fourth
term is zero. The non-dimensional density of hydronium ions
can be derived by integrating this equation and can be written
as

ρ̃α = −MeαK(Nc,R,Lz)

Hhα(4πN ′
L)

cos(2πN ′
Lz̃) + az̃ + b, (19)

where a and b are constants of integration.
Two boundary conditions are required to determine these

constants. We assumed that the density gradient at the en-
trance of the pore is zero (the flux of the hydronium ions at the
entrance is due to the gradient in its chemical potential) and,
as a result, a = 0. A pore is electrically neutral; therefore, the
total number of hydronium ions should always be equal to the
number of sulfonate ions within the pore. The integration of
the density function of Eq. (19) along the pore length results
in a unit value; i.e., b = 1. Thus, the density variation of the
hydronium ions can be expressed as

ρ̃α = 1 − MeαK(Nc,R,Lz)

Hhα(4πN ′
L)

cos(2πN ′
Lz̃), (20)

which shows that the density varies sinusoidally within the
pore and depends on the concentration of sulfonate groups
and hydronium ions, the separation distance between two con-
secutive rings of sulfonate groups, and the radius of the pore.
This expression is similar to the expression of potential en-
ergy due to sulfonate groups on the pore wall [see Eq. (1)].
The magnitude of the average potential energy, Vpα , is a max-
imum at the axial positions of the rings of sulfonate groups
and is a minimum between any two adjacent rings. Thus, the

hydronium ion density also varies according to the potential
energy. Meα , a negative quantity, is related to the interaction
of sulfonate groups with the hydronium ions and is propor-
tional to the surface charge density on the pore wall. Hyα , a
positive quantity, is related to the hydronium ion–hydronium
ion interaction and is proportional to the hydronium ion den-
sity within the pore. These parameters also depend on the pore
specifications: pore radius, distance between two consecutive
rings, and number of sulfonate groups in a ring. The magni-
tude of the minimum and maximum density regions within
the pore depends on the ratio of the magnitudes of Meα and
Hhα; i.e., the surface charge density on the pore wall, �s, and
the density of hydronium ions, ρα . Increasing �s increases the
attractive force between sulfonate groups and hydronium ions
and therefore hydronium ions accumulate near the rings. This
causes a large difference between the maximum and mini-
mum density regions within the pore. Increasing ρα augments
the hydronium ion–hydronium ion interaction, and results in a
relatively uniform density of hydronium ions within the pore.

2. Velocity variation within the pore

The expression of the density variation in Eq. (20) can be
applied to Eq. (16) at the steady-state condition, yielding

0 = −Reαρ̃αũα

∂ũα

∂z̃
+ ReαEnαρ̃α + d

L

∂2ũα

∂z̃2
. (21)

The first term in Eq. (21) is ten orders of magnitude lower
than the second term and seven orders of magnitude lower
than the third term; hence, this term may be neglected. The
non-dimensional velocity variation along the pore length can
then be derived by integrating the above equation:

ũα = −L

d
ReαEnα

(
z̃2

2
+ MeαK(Nc,R,Lz)

16Hhα(πN ′
L)3

cos(2πN ′
Lz̃)

)

+Az̃ + B, (22)

where A and B are constants of integration. Two boundary
conditions are required to determine these constants. The ve-
locity gradient (related to the constant, A) is unknown at the
entrance of the pore; rather, we know that the flux of hydro-
nium ions should be constant according to the mass conserva-
tion principle. (We will show in Subsection II E 3 that we do
not need any information concerning A in order to calculate
the flux and conductivity in the pore.) We take the average
velocity at the entrance of the pore as Vav = Vα , which is the
steady-state velocity of the hydronium ions achieved under
the effect of the external electric field; this can be determined
using the Nernst-Einstein equation. Hence, ũα(z̃ = 0) = 1.
The value of B can be determined as

B = 1 + L

d
ReαEnα

MeαK(Nc,R,Lz)

16Hhα(πN ′
L)3

, (23)

and, accordingly, the dimensionless velocity of hydronium
ions within the pore can be written as

ũα = 1 + L

d
ReαEnα

MeαK(Nc,R,Lz)

16Hhα(πN ′
L)3

(1 − cos(2πN ′
Lz̃))

− L

d
ReαEnα

z̃2

2
+ Az̃. (24)
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This expression indicates that the velocity also varies sinu-
soidally in the pore and depends on the concentration of sul-
fonate and hydronium ions, separation distance between sul-
fonate groups, applied electric field, viscosity of the fluid, and
length and radius of the pore. The nature of the velocity profile
is a function of the velocity gradient, A, at the entrance of the
pore. The mass conservation of hydronium ions requires that
the flux of the hydronium ions within the pore should be con-
stant in the axial direction. The velocity variation within the
pore is out of phase with the number density variation. Thus,
the velocity is a minimum where number density is a max-
imum; i.e., in the vicinity of the rings of sulfonate groups.
Conversely, it is a maximum where the number density is a
minimum; i.e., between the two rings. These deductions from
Eq. (2) indicate that the hydronium ions are slowed down as
they pass by the attractive sulfonate ions.

3. Calculation of the flux and conductivity
within the pore

The number density and velocity of hydronium ions
change sinusoidally within the pore, but the flux is constant
along the pore length. The non-dimensional flux of hydro-
nium ions in the pore can thus be calculated using the number
density and velocity variations within the pore:

ρ̃α ũα =
[

1 − MeαK(Nc,R,Lz)

Hhα(4πN ′
L)

cos(2πN ′
Lz̃)

]

×
[

1 + L

d
ReαEnα

MeαK(Nc,R,Lz)

16Hhα(πN ′
L)3

× (1 − cos(2πN ′
Lz̃)) − L

d
ReαEnα

z̃2

2
+ Az̃

]
, (25)

which is a function of axial position, z. However, the con-
stant flux constraint eliminates the z variation of the flux in
Eq. (25), and hence,

ρ̃α ũα = 1 + L

d
ReαEnα

MeαK(Nc,R,Lz)

16Hhα(πN ′
L)3

. (26)

This equation can be further simplified by replacing the
non-dimensional parameters by their respective definitions,
giving

ρ̃α ũα = 1 + 2

π2NLNc

�s

F

L

R

RgT

ηDρα

K(Nc,R,Lz)

bαα(Nc,R,Lz)
, (27)

and, accordingly, the flux within the pore can be expressed as

ραuα = ρ̄αVα

(
1 + 2

π2NLNc

�s

F

L

R

RgT

ηDρα

K(Nc,R,Lz)

bαα(Nc,R,Lz)

)
.

(28)

The above equation shows that the flux is constant within
the pore and its magnitude depends on the pore specifications,
fluid properties, and external field. The multiplier ρ̄αVα in the
above expression is the flux of hydronium ions through the
pore as if there were no sulfonate groups on the pore wall.
The second term in this equation is negative because the sur-
face charge density on the wall, �s, is negative, which shows

that the introduction of surface charges on the pore wall de-
creases the flux of hydronium ions through the pore. The pa-
rameters K(Nc, R, Lz) and bαα(Nc, R, Lz) represent the inter-
actions of hydronium ions with sulfonate ions and hydronium
ion–hydronium ion interactions, respectively, within the pore
element, and depend on the radius of the pore, number of sul-
fonate groups in a ring on the circumference (at constant axial
position), and the separation distance between two consecu-
tive rings of sulfonate groups. These parameters also appeared
in Eqs. (1) and (3), respectively, and can be calculated with
the knowledge of pore specifications.

The flux of the hydronium ions within the pore is directly
related to the current density, j, by

j = ραuα

F

NA

. (29)

The proton conductivity of the pore is related to the current
density and external electric field in the pore by the expression

σ = j

|Eext | . (30)

Substituting Eqs. (28) and (29) into Eq. (30), the conductivity
of the pore is determined as

σ = σ0

(
1 + 2

π2NLNc

�s

F

L

R

RgT

ηDρα

K (Nc,R,Lz)

bαα (Nc,R,Lz)

)
,

(31)
where

σ0 = Dρα

RgT
F 2 ρ̄α

NA

. (32)

Equation (32) represents the conductivity of the pore as if
there were no sulfonate groups present. The sulfonate anions
on the wall reduce the conductivity, and hence its value de-
pends on the morphology of the interface. Using the defini-
tion of surface charge density of Eq. (31), the conductivity
expression can further be simplified to

σ = σ0

(
1 − 2

π2R2

kBT

ηDρα

K (Nc,R,Lz)

bαα (Nc,R,Lz)

)
, (33)

which quantifies the reduction in the conductivity due to the
presence of sulfonate ions on the pore wall. The parameters
K and bαα depend on the number of sulfonate groups in a
ring, the pore radius, and the separation distance between two
consecutive rings.

In the above expressions of the conductivity, the diffusion
constant of hydronium ions in the membrane water, Dρα

, is a
function of water content. This can be related to the diffusion
coefficient of hydronium ions in bulk water, Dαs, and porosity
and tortuosity of the membrane by

Dρα
= εw

τ
Dαs, (34)

where εw and τ are the porosity and tortuosity of the mem-
brane, respectively. The porosity and tortuosity depend on the
internal structure and water content of the membrane. The
effective tortuosity can be introduced by replacing Eq. (34)
by9

Dρα
= K1Dαs, (35)
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where

K1 = (εw − εw0)q , (36)

εw and εw0 are the porosities of the membrane at water con-
tents λ and λ0, respectively. λ0 is the minimum water content
of the membrane below which proton diffusion does not oc-
cur in the membrane due to lack of connectivity of the water
phase. Consequently, εw0 may be referred to as the threshold
porosity, and (εw − εw0) is the volume fraction of the water
phase through which diffusion is occurring.9, 22 The value of
the Bruggeman exponent typically used is q = 1.5;9, 23 it is
sometimes used as a fitting parameter. The porosity of the
membrane can be related to the partial molar volumes of a
dry membrane and water by9

εw = λ

λ + V̄m/V̄s

, (37)

where V̄m and V̄s are the partial molar volumes of the dry
membrane and water, respectively. The molar volume of dry
membrane can be approximated as the ratio of equivalent
weight of the membrane and density of the dry membrane:9

Vm ≈ EW

ρm

, (38)

where EW is the equivalent weight of the membrane and is
defined as the ratio of the weight of dry membrane in grams
to the moles of acid groups in the membrane. Also, ρm is
the density of the dry membrane. For a Nafion 117 mem-
brane, EW = 1100 g/mol and ρm = 2.05 g/cm;9 thus, V̄m

= 536.6 cm3/mol. The partial molar volume of water, V̄s ,
is 18.016 cm3/mol. The value of minimum water content,
λ0, is taken as 1.9 to calculate the threshold porosity of the
membrane.9, 24

The size of a hydronium ion is almost the same as that
of a water molecule; hence, they can be treated as identical
particles. The Stokes-Einstein equation for the self-diffusion
coefficient of identical particles assumes the complete slip
condition,21 and the expression of the self-diffusion is

Dαs = kBT

η2π

(
NA

V̄s

)1/3

, (39)

where Dαs is quantified by Eqs. (34) and (35). Subsections
III A–III E discuss the effect of radius, water content, and
sulfonate distribution over the pore wall on the conductivity.

III. RESULTS AND DISCUSSION

The expression of Eq. (33) shows that proton conductiv-
ity depends on the morphology of the interface. Factors com-
prising the morphology include the pore size (length and ra-
dius), number of sulfonate groups on the pore wall, tortuosity,
and porosity of the interfacial region. The parameter K(Nc, R,
Lz) quantifies the interaction of hydronium ions with sulfonate
ions on the pore wall and bαα(Nc, R, Lz) scales the hydronium
ion–hydronium ion interactions, as expressed by Eqs. (1) and
(3), respectively. These parameters depend on the radius and
length of the pore as well as the concentration of hydronium
ions within the pore. It is evident from Eq. (33) that the con-
ductivity decreases with increasing sulfonate–hydronium in-

teractions (K in the numerator) and increases with increasing
hydronium–hydronium interactions (bαα in the denominator).
The effect of all the above factors on the proton conductivity
of a pore is discussed in Subsections III A–III E.

A. Effect of water content and pore radius
on conductivity

To examine the effect of water content and radius on the
conductivity, we considered two pores of radii 8 and 10 Å,
each at three water contents, 6, 12, and 18. The total num-
ber of sulfonate groups in the pores was 36; i.e., NL × Nc

= 36. We also assumed that the pores were filled with wa-
ter; thus, the volume is directly proportional to the number
of water molecules within the pore, NL × Nc × λ. Accord-
ingly, the volumes of the pores at the same water content are
equivalent, and the pore of higher radius will be smaller in
length. The number of hydronium ions in a pore is equal to
the number of sulfonate ions, which is fixed in this case; thus,
the concentration of hydronium ions in all pores is the same.

The conductivities of these pores, calculated using
Eq. (33), are presented in Table I. The sulfonate distribution is
NL = 9 and Nc = 4. The last column in Table I represents the
experimental conductivity data for a Nafion membrane at the
specified water contents.25 The results reveal that the calcu-
lated conductivities are reasonably close to the experimental
values. Lr in Table I is the distance between two consecutive
sulfonate groups in a ring and Ls is the average separation dis-
tance between two sulfonate groups on the pore wall. These
distances can be expressed as

Lr = 2πR

Nc

, (40)

Ls = N ′
LLz + NcLr

N ′
L + Nc

. (41)

Increasing the number of sulfonate groups, Nc, in the ring de-
creases Lr; thus, the smaller value of Lr results in the stronger
local attractive force between SO3

− groups and H3O+ ions.
This force restricts the motion of the hydronium ions along
the pore length, thereby decreasing proton conductivity. If two

TABLE I. Conductivity (σ ) variation with water content (λ) and pore radius
(R). Total number of sulfonate groups in the pore is NL × Nc = 36, where NL

and Nc are number of rings of sulfonate groups along the length and number
of sulfonate groups in a ring, respectively; these are 9 and 4, respectively. The
volumes of two pores at the same values of λ are equivalent. Lz, Lr, and Ls are
the separation distance between two consecutive rings, between two consec-
utive sulfonate groups in a ring, and the average separation distance between
two sulfonate groups on the pore wall, respectively. Calculated conductivities
are quantitatively similar to the experimental data.

R = 8 Å R = 10 Å Expt.

λ Lz Lr Ls σ Lz Lr Ls σ σ a

(#H2O/–SO3H) (Å) (Å) (Å) (S/cm) (Å) (Å) (Å) (S/cm) (S/cm)

6 4.0 12.6 6.9 0.0265 2.6 15.7 7.0 0.0287 0.02
12 8.0 12.6 9.5 0.0401 5.1 15.7 8.7 0.0437 0.05
18 12.0 12.6 12.2 0.0423 7.7 15.7 10.4 0.0477 0.06

aExperimental proton conductivity data for a Nafion membrane at room temperature.25
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pores have the same value of Nc, the lower radius pore will
have a lower value of Lr, and the interaction distance between
the sulfonate groups and hydronium ions is thus lower; the
result is a stronger attractive force. The lower value of Lrin
the pore decreases the proton conductivity. On the other hand,
Lz is the separation distance between two consecutive rings
of sulfonate groups, and its magnitude determines the relative
dominance of sulfonate–hydronium ion and hydronium ion–
hydronium ion interactions. The smaller value of Lz results in
higher conductivity as the hydronium ions move more freely
from one ring to the next due to the inductive attraction down
the axial length of the pore. Smaller Lz also decreases the in-
teraction distance between the hydronium ions, thus resulting
in a higher value of bαα .

Table I also shows that the conductivities of the pores of
radius 10 Å are higher than those of the corresponding 8 Å
pores. The volumes of the pores at a specified water content
are the same; thus, the length of the pore of radius 10 Å is
smaller. In other words, Lz is smaller for this pore at a spec-
ified sulfonate distribution scheme. A larger radius also im-
plies a higher value of Lr. Both of these (lower Lz and higher
Lr) result in higher conductivity. Physically, as the pore radius
increases, the hydronium ions are, on average, farther away
from the sulfonate charges on the wall, and hence can move
more freely through the pore.

In general, a pore expands with increasing water content.
If two pores have the same radius, the pore with the higher wa-
ter content will be longer. As a result, Lr is same for all pores,
but Lz increases with increasing water content. This decreases
the net attraction of hydronium ions from one ring to the next
and, thus, decreases the conductivity. On the other hand, in-
creasing water content also decreases the ratio of interaction
parameters K and bαα , which increases the conductivity ac-
cording to Eq. (33). In this case, the combined effect of these
two factors results in the increase of the conductivity with in-
creasing water content.

B. Effect of sulfonate distribution
on proton conductivity

In Sec. III A, our results showed that increasing water
content increases the conductivity; however, the sulfonate dis-
tribution over the pore wall exhibited a strong effect on the
conductivity. Figure 2(a) shows the variation of proton con-
ductivity with increasing water content for three sulfonate
distribution schemes. All pores have a radius 8 Å and the
total number of sulfonate groups on the pore wall is 36.
The lengths of the pores and, thus, the correspondingLz val-
ues, depend on the water content, as discussed in Sec. III A.
Figure 2(b) shows the dependency of Lz on water content and
sulfonate distribution. These figures show that conductivity
strongly depends on distance between two rings of sulfonate
groups, Lz. As the number of sulfonate groups in the pores
is constant, increasing Nc decreases NL; consequently, Lz in-
creases. This results in a stronger local force of sulfonate rings
with hydronium ions and an accumulation of hydronium ions
in the vicinity of rings; therefore, there is less conduction of
hydronium ions down the pore because adjacent rings are fur-
ther apart. As a consequence, the average flux of hydronium
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FIG. 2. Variation of (a) conductivity (σ ) and (b) Lz with water content (λ)
and sulfonate distribution(NL, Nc), where NL and Nc are the number of rings
of sulfonate groups along the length and number of sulfonate groups in a ring,
respectively. Lz is the separation distance between two consecutive rings of
charges along the pore length. The pore is of radius 8 Å and the total number
of sulfonate groups on the pore wall is 36. Three distribution schemes were
considered. The pore is filled with water and the volume of a pore is directly
proportional to its water content.

ions along the pore is very low. The figure also shows that
the conductivity for sulfonate distribution of (4, 9) is almost
zero, even at higher water contents, because the large num-
ber of sulfonate charges in a ring produces a highly attrac-
tive environment for the hydronium ions. Furthermore, higher
water contents require higher values of Lz, which increases
from 10.7 to 32.1 Å on increasing water content from 6 to 18.
For (6,6), conductivity increases with increasing water con-
tent from 6 to 12, but after that it decreases because of higher
values of Lz. For (9, 4), conductivity increases with increasing
water content, but higher water content has less effect on the
conductivity because of the increasing value of Lz. This shows
that the sulfonate distribution along with separation distance
plays an important role in the proton conduction.

C. Conductivity of pore with NT = 72

In this subsection, we studied the conductivity of pores
with total number of sulfonate groups, NT = 72, twice the
number of the previous case. The volume of a water-filled
pore is directly proportional to NL × Nc × λ. If two pores
have the same water content, the pore with the higher num-
ber of sulfonate ions has a larger volume; i.e., the volume of
a pore with NL × Nc = 72 and λ = 6 will be twice that of a
pore with NL × Nc = 36 and λ = 6.

The conductivities of the pores of radii 10, 12, and
14 Å at water contents 6, 12, and 18 are shown in Fig. 3.
Four sulfonate distribution schemes were considered: (6, 12),
(8, 9), (9, 8), and (12, 6). The numerical values in the legend
are (NL, Nc, R). For pores of larger radius, the conductivity
increases with water content for all distributions; however, it
decreases as the distribution shifts to higher Nc and lower NL,
as noted in Subsection III B. Again, this is because the larger
number of sulfonate groups in the rings provides a stronger lo-
cal attraction that hinders the transport of the hydronium ions
down the tube. Furthermore, as the number of rings decreases,
the distance between them, Lz, increases, thus dampening the
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FIG. 3. Variation of conductivity (σ ) with water content (λ), sulfonate dis-
tribution (NL, Nc), and pore radius (R). The numerical values in the legends
are (NL, Nc, λ). The total number of sulfonate groups on the pore wall is 72.

transit of hydronium ions from one ring to the next. For pores
of smaller radius, the conductivity actually decreases at high
water contents, especially at high values of Nc. This is because
the attractive force between the ring sulfonate groups and the
hydronium ions is much higher on average at small radii than
at large ones.

Figure 4 shows the conductivity variation with pore ra-
dius at λ = 18. Each pore has 72 sulfonate groups on the wall.
The numerical values in the legends are (NL, Nc). Conduc-
tivity increases with increasing pore radius, as noted above.
Pores of lower radii show a strong dependency of the proton
conductivity on the sulfonate distribution. Again, a smaller ra-
dius pore provides a strong interaction force between rings of
sulfonate groups and hydronium ions, thus providing a barrier
to proton transport down the pore. At high values of radius,
the hydronium ions are, on average, further removed from the
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FIG. 4. Variation of conductivity (σ ) with pore radius (R) at water content
(λ) = 18. The numerical values in the legends are (NL, Nc). The total number
of sulfonate groups on the pore wall is 72.
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FIG. 5. Variation of conductivity (σ ) with number of rings of sulfonate
groups (NL). The numerical values in the legends are (λ, R). The number
of sulfonate groups in each ring (Nc) is 6.

sulfonate groups and, therefore, their distribution has little ef-
fect on proton conductivity.

D. Effect of NL on conductivity

This subsection examines the conductivity of pores that
have the same radius, the same number of sulfonate groups
in the rings, and the same distance between two consecutive
rings along the length of the pores. In this case, the volume
of a pore depends on the number of rings of sulfonate groups
along the length, NL, and water content, λ, of the pore. At
fixed water content, increasing the value of NL by two will
double the volume and, thus, will double the length of the
pore.

The variation of conductivity with NL is shown in Fig. 5.
The conductivity data for the pores of radii 10 and 14 Å are
presented. The number of sulfonate groups in each ring is 6.
Each pore was considered at three water contents, 6, 12, and
18. The numerical values in the legends are (λ, R). This figure
shows that the conductivities of all pores and of same water
content are almost the same if the value of NL is doubled or
tripled from 6. The slight change in the conductivity data evi-
dent in this figure is due to a minor change in the value of Lz

in the pore. For a pore of length L and NL sulfonate groups, Lz

is L / (NL − 1), and for a pore of length 2L and 2NL sulfonate
groups, Lz is 2L / (2NL − 1); hence, the value of Lz differs
slightly. Results show that the conductivity of the pore does
not change significantly with NL or with the length of the pore
at a fixed radius and fixed water content. In other words, the
conductivity for a specific sulfonate distribution is not much
affected by the length of the pore.

E. Calculation of the flux and conductivity
within two pores in series

The species enter and leave the membrane via two inter-
faces at the anode side and cathode side of the membrane,
respectively. The pores in the interface can be different in
radius and length from the pores within the membrane. The
ionomer used in the MEA is of the same material as in the
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E u A u A

N
N

FIG. 6. Two pores of different radii in series. Each pore has NL rings of
sulfonate groups with Nc groups per ring. The water content is λ. An external
field, Eext, is applied.

membrane; the distribution of sulfonate ions on the pore wall
will therefore be similar. The water content of the pores will
also be similar. These two different kinds of pores, membrane,
and interface, can be modeled as if in series, as depicted in
Fig. 6. Under these conditions, the pores have equivalent vol-
umes, provided that they are completely filled with water. The
material balance in each pore dictates that the number of hy-
dronium ions per unit time entering into each pore under the
influence of external field, Eext, will be the same. If the fluxes
of hydronium ions in the pores are ρ1u1 and ρ2u2, respec-
tively, and the cross-sectional areas are A1 and A2, respec-
tively, the material balance is

ρ1u1A1 = ρ2u2A2. (42)

The electric current, i, in the pores can be expressed in
terms of hydronium ion fluxes within the pores as

i = ρ1u1A1
F

NA

= ρ2u2A2
F

NA

, (43)

and the total conductivity of the two pores in series, σT , can
be expressed, according to Eq. (30), as

1

σT

= Eext

i/A
, (44)

where A is the resultant cross-sectional area of the combined
pores and can be related to the cross-sectional area and length
of the individual pores, L1 and L2, as

A = A1L1 + A2L2

L
, (45)

where L = L1 + L2. Equation (44) can be rewritten as

1

σT

L

A
= EextL

i
. (46)

The total potential drop across the pores is the sum of po-
tential drops across the individual pores; i.e., EextL = EextL1

+ EextL2. Equation (46) can be further reduced by employ-
ing Eq. (43), ultimately resulting in a final expression for the
overall pore conductivity:

1

σT

= 1

L2

(
L2

1

σ1
+ L2

2

σ2
+ L1L2

(
R2

2

σ1R
2
1

+ R2
1

σ2R
2
2

))
. (47)

This expression shows that the resultant conductivity depends
on the lengths, radii, and conductivities of the pores in series.

Assuming that both the membrane and ionomer interface
have a water content of 12, the radii of the pores are 12 and
10 Å, respectively, and the number of sulfonate groups in each
pore is 72. Table II presents the conductivities of these pores.
Clearly, conductivity of the pore of radius 10 Å is lower, as
discussed in Subsections III A–III D. The number of sulfonate

TABLE II. Conductivity (σ ) of two individual pores (R = 10 Å and R
= 12 Å) and resultant conductivity (σR) of the pores in series. The total num-
ber of sulfonate groups in each pore is NL × Nc = 36, where NL and Nc are
the number of rings of sulfonate groups along the length and the number of
sulfonate groups in a ring, respectively. The water content (λ) of each pore
is 12. The sulfonate distribution on the pore wall is the same. The volumes
of the two pores are also the same; i.e., the pore of radius 10 Å is longer.
Lz, Lr, and Ls are the separation distance between two consecutive rings,
between two consecutive sulfonate groups in a ring, and average separation
distance between two sulfonate groups on the pore wall, respectively. The re-
sultant conductivity is closer to the conductivity of the pore of smaller radius
(R = 10 Å).

R = 10 Å R = 12 Å Pores in series

Lz Lr Ls σ Lz Lr Ls σ σR

NL Nc (Å) (Å) (Å) (S/cm) (Å) (Å) (Å) (S/cm) (S/cm)

6 12 16.4 5.2 8.5 0.0191 11.4 6.3 7.8 0.0384 0.0221
8 9 11.7 7.0 9.1 0.0352 8.2 8.4 8.3 0.0423 0.0361
9 8 10.3 7.9 9.1 0.0382 7.1 9.4 8.3 0.0430 0.0384
12 6 7.5 10.5 8.5 0.0420 5.2 12.6 7.8 0.0439 0.0413

groups and water content are the same in the pores; therefore,
the volumes are also the same. Lengths of the pores were cal-
culated from their volumes and radii. The resultant conduc-
tivity of the pores was determined using Eq. (47) with the
knowledge of their radii, lengths, and individual conductivi-
ties, as displayed in the last column of the table. Results show
that the resultant conductivity is closer to the conductivity of
the small radius pore, i.e., 10 Å; thus, the pore with the lowest
conductivity controls the resultant conductivity of two pores
in series. This is generally the pore with the smaller radius,
regardless of individual pore length. The radii of the pores in
the interface are typically smaller than those in the membrane,
and, thus, it is highly likely that the interface will control the
total conductivity of the MEA, especially at high water con-
tents where the membrane channels will become increasingly
dilated (Fig. 6).

IV. CONCLUSIONS

A typical pore within the interface of a hydrated Nafion
membrane was modeled as a cylindrical tube with various
distributions of sulfonate groups (anionic charges) along its
length and circumference. The interface is very thin as com-
pared to the membrane; thus, the variations in the water den-
sity and velocity were assumed to be negligible. The ana-
lytical expressions for the variation of density, velocity, and
flux of the hydronium ions along the length of the tube were
derived. The density of the hydronium ions changed sinu-
soidally along the length of the pore, exhibiting a maximum
in the vicinity of the sulfonate groups. The expression of ve-
locity of the hydronium ions exhibited a similar variation in
the z direction, but exhibited a minimum near to the sulfonic
acids end-groups, with a maximum in between axial locations
of end-groups. The conductivity was related to the flux, and
an expression for it was derived in terms of pore morphology
and distribution of sulfonate groups.

The conductivity of the pore was investigated for pores
of different radii, water contents, and sulfonate distribution
schemes. The results showed that the conductivity increased
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with increasing water content and increasing pore radius. The
conductivity also increased with increasing the number of
rings of sulfonate groups along the length of the pore, and
decreased with increasing number of sulfonate groups in each
ring. In a pore of fixed radius, increasing water content in-
creases the separation distance between the sulfonate groups
on the pore wall and, thus, had a negligible or adverse effect
on the conductivity. The results showed that at fixed radius,
fixed number of sulfonate groups in each ring, and fixed wa-
ter content, the conductivity of a pore was independent of the
number of rings along the length; in other words, indepen-
dent of the length of the pore. The conductivity of two pores
in series, one of the interface and one of the membrane, was
also investigated. The resultant conductivity was closer to the
conductivity of the pore with the lower conductivity; gener-
ally, the pore with the smaller radius. This could imply that
the interfacial region controls the proton conductivity.

Realistically, the pores within the membrane and interfa-
cial regions are not cylindrical tubes by any means, and the
distribution of sulfonate groups within them is not symmet-
rical. However, it is reasonable to assume that a pore within
the ionomer interface can be approximately treated as a cylin-
der, and that the average charge distribution, as mandated by
the ionomer equivalent weight, is approximately evenly dis-
tributed along the pore wall. Hence, the model assumptions
should not be overly restrictive as long as the correct num-
ber of charges is used in the calculations. This is essentially
validated by the simulations, which showed that for a con-
stant pore radius and charge distribution, the conductivity was
essentially independent of the pore length. Furthermore, rea-
sonable estimates of the pore diameter of the ionomer in-
terface can be obtained from SAXS experiments, which is
the approach that was used herein to estimate the appropri-
ate pore sizes to use in the simulations. Consequently, for a
given membrane of specified equivalent weight, a cylindrical
tube with uniformly distributed charges should constitute a
reasonable model for examining the effects of sulfonate dis-
tribution, water content, pore size, etc. on proton transport
through a typical pore, and to approximate with reasonable
accuracy macroscopic transport properties, such as the overall
MEA conductivity. Hence, the model may prove very useful
for estimating conductivities and other transport properties in
situations that are largely inaccessible experimentally, or for
examining efficiently the competing effects on PEM conduc-
tivity, such as, e.g., the dependence of conductivity on hydra-
tion level, equivalent weight, thickness of interface, and pore
size.
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APPENDIX A: MICROSCOPIC STATISTICAL
MECHANICAL MODEL

This statistical model is based on the assumption that
the water domains are regular cylindrical channels of con-

stant diameter with uniformly distributed sulfonate groups.
Microscopic interaction potential energies among water
molecules, hydronium ions, and sulfonate groups were pre-
sented previously12 and possess the forms detailed below.

1. Sulfonate–hydronium ion interaction

The sulfonate anions are assumed to form lines of charges
distributed evenly in the axial direction and around the cir-
cumference of the tube wall. Each hydronium ion interacts
with these lines of charges. When a unit charge q1 is placed
in a field of a row of an infinite number of charges (with unit
charge q2) aligned in the zdirection, the potential energy of the
charge q1 changes periodically in the z direction (Fig. 1). Us-
ing a Lekner summation,26 the potential energy, V , at a point
charge can be written as

V (z, rxy)

= q1q2

πε0Lz

( ∞∑
n=1

cos

(
2πn

z

Lz

)
K0

(
2πn

rxy

Lz

)
− ln rxy

2

)
,

(A1)

where rxy is the perpendicular distance of charge q1 from the
row of charges in the x andy directions, Lz is the separation
distance between two consecutive charges, and K0 is the mod-
ified Bessel function of second kind and zero order. The mag-
nitude of the potential energy is a maximum in the vicinity
of the charge and a minimum in between two consecutive
charges.

A hydronium ion, α, in the pore interacts with NL × Nc

sulfonate groups; i.e., Nc lines of charges, where each line has
NL sulfonate groups. Thus, the interaction potential energy,
Vp, describing the interaction of the sulfonate groups with a
hydronium ion, α, at a position (r, θ , z) in the pore is

Vp(r, θ, z) = q1q2

πεLz

(
NL∑
n=1

cos
(

2πnN ′
L

z

L

)

×
Nc∑
i=1

K0

(
2πn

rrθ,i

Lz

)
−

Nc∑
i=1

ln
(
rrθ,i

)
2

)
, (A2)

where q1 is the charge of a hydronium ion, q2 is the charge of
a sulfonate anion, rrθ ,i is the perpendicular distance of the hy-
dronium ion from the ith line charge on the pore wall, which
is equal to

(R2 + r2 − 2Rr cos(θi))
1/2, r = [0, R], θi = [0, 2π ], (A3)

(see Fig. 1), and ε is the permittivity of the water in the pore.
The value of K0 for n = 1 dominates in the summation of K0

over n = [1, Nc], so all other terms can be neglected; hence
Eq. (A2) becomes

Vp(r, θ, z) = q1q2

πεLz

(
cos

(
2πN ′

L

z

L

) Nc∑
i=1

K0

(
2π

rrθ,i

Lz

)

−
Nc∑
i=1

ln(rrθ,i)

2

)
. (A4)
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2. Charge–charge interaction

A hydronium ion is positively charged. The interaction
of a pair of hydronium ions was assumed to be Coulombic.
Thus, the potential energy, Vαα , between two hydronium ions
inside a pore is

Vαα(|rαi
− rαj

|) = q2
1

4πε|rαi
− rαj

| (A5)

for i �= j, where |rαi
− rαj

| is the separation distance between
any pair of hydronium ions, i and j.

3. Dipole–dipole interaction

We assumed that the interaction between water molecules
is described by a dipole–dipole interaction and that water
molecules comprise a continuum within the pore (consider
the thermal distribution of water molecules); hence, the in-
teraction energy, Vss , between two water molecules having
dipole moment μ is

Vss(|rsi
− rsj

|) = − 2μ4

3(4πε)2kBT |rsi
− rsj

|6 (A6)

for i �= j, where |rsi
− rsj

| is the separation distance between
any pair of water molecules.

4. Charge–dipole interaction

The interaction between a hydronium ion and a water
molecule was considered to be a charge–dipole interaction.
Hence, the interaction potential energy, Vαs , assuming that the
water molecules form a continuum and follow the thermal dis-
tribution, is

Vαs(|rα − rs |) = − μ2q2
1

48π2ε2kBT |rα − rs |4 , (A7)

where |rα − rs| is the separation distance between a hydro-
nium ion, α, and a water molecule, s.

APPENDIX B: CONSTANTS AND DIMENSIONLESS
GROUPS USED IN CALCULATIONS

The following values and units were assigned to the
model parameters.

Proton diffusion coefficient in the hydrated Nafion
membrane:17, 27 Dρα

= 8.0 × 10−10 m2/s at λ;
Viscosity of water (at 298 K): η = 8.91×10−4 Ns/m2;
Temperature: T = 298 K;
Radius of a water molecule: rs = 1.5 Å;
Radius of a hydronium ion: rα = 1.5 Å;
Surface charge density on the pore wall: �s = − NLNcF

2πRLNA
;

External field strength: Eext,z = 2000 V/m15.
The value of the velocity of hydronium ions at the pore

entrance, Vα , was calculated using the Nernst-Einstein equa-
tion, which relates the diffusivity of a hydronium through a
medium to its steady-state velocity by

Vα = Dρα

RgT
FEext,z, (B1)

and ρ̄α is the number density of hydronium ions in the pore
= NLNc

πR2LNA
.

For a pore with specification NL = 10, Nc = 6, and λ

= 10, L = 80 Å, the radius of the pore can be calculated by
assuming that the pore is filled with water. The calculated val-
ues of radius, surface charge density, density, velocity of hy-
dronium ions, and the dimensionless groups are

R = 8.5 Å, �s = −0.226 C/m2, ρ̄α = 3.35 × 1027/m3, Vα

= 6.2 × 10−3 cm/s, Diα = 4.80 × 10−11, Hhα = 1.23 × 1014,
Hyα = −2.82 × 1012, Meα = −1.23 × 1016, Reα = 1.24
× 10−8, and Enα = 2.08 × 1010.
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