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The influence of viscous heating on the stability of Taylor–Couette flow is investigated
theoretically. Based on a linear stability analysis it is shown that viscous heating leads
to significant destabilization of the Taylor–Couette flow. Specifically, it is shown that in
the presence of viscous dissipation the most dangerous disturbances are axisymmetric
and that the temporal characteristic of the secondary flow is very sensitive to the
thermal boundary conditions. If the temperature difference between the two cylinders
is small, the secondary flow is stationary as in the case of isothermal Taylor–Couette
flow. However, when the temperature difference between the two cylinders is large,
time-dependent secondary states are predicted. These linear stability predictions are
in agreement with the experimental observations of White & Muller (2000) in terms
of onset conditions as well as the spatiotemporal characteristics of the secondary
flow. Nonlinear stability analysis has revealed that over a broad range of operating
conditions, the bifurcation to the time-dependent secondary state is subcritical, while
stationary states result as a consequence of supercritical bifurcation. Moreover, the
supercritically bifurcated stationary state undergoes a secondary bifurcation to a time-
dependent flow. Overall, the structure of the time-dependent state predicted by the
analysis compares very well with the experimental observations of White & Muller
(2000) that correspond to slowly moving vortices parallel to the cylinder axis. The
significant destabilization observed in the presence of viscous heating arises as the
result of the coupling of the perturbation velocity and the base-state temperature
gradient that gives rise to fluctuations in the radial temperature distribution. Due to
the thermal sensitivity of the fluid these fluctuations greatly modify the fluid viscosity
and reduce the dissipation of disturbances provided by the viscous stress terms in the
momentum equation.

1. Introduction
It is well known that isothermal Taylor–Couette flow undergoes a transition to

a stationary and axisymmetric toroidal vortex flow above a critical Reynolds num-
ber (Taylor 1923; Chandrasekhar 1961). Higher-order time-dependent and non-
axisymmetric transitions are also observed as the Reynolds number (Re) is increased
above its critical value (Andereck, Liu & Swinney 1986). These flow transitions have
been the topic of numerous theoretical and computational studies. In fact, a number
of investigators have been able to accurately predict these transitions (e.g. Chossat
& Iooss 1985; Demay & Iooss 1984; Golubitsky & Stewart 1986; Golubitsky &
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Langford 1988; Demay, Iooss & Laure 1992; Jones 1982; Moser, Moin & Leonard
1983; Marcus 1984a, b; Fasel & Booz 1984; Liao, Jane & Young 1999). A summary
of the most important advances in this area is provided by Tagg (1992).

The effect of energetics on the stability of Taylor–Couette flow has also been
a topic of many investigations. Most prior studies have been concerned with the
stability of the flow in the presence of a radial temperature gradient where an axial
flow can be developed due to buoyancy. Experiments by Snyder & Karlsson (1964)
have shown that for small values of the temperature difference between the inner and
outer cylinders |∆T | (i.e. |∆T | < 1 K) the flow is stabilized while for large values (i.e.
|∆T | > 1 K) the flow is destabilized. Moreover, it has been observed that an imposed
temperature gradient influences the structure of the secondary flow. Specifically, for
small values of |∆T | the secondary flow is similar to the isothermal flow (i.e. toroidal
vortex flow) while uneven spirals are observed at large |∆T |. In addition, the neutral
stability diagram has been observed to be nearly symmetric in ±|∆T | for small values
of ∆T .

The effect of an imposed radial temperature gradient on the linear stability of
the Taylor–Couette flow has also been theoretically examined by Ali & Weidman
(1990) and it has been shown that for a fixed Prantdl number, Pr, the secondary
flow is axisymmetric and the critical Reynolds number, Rec, increases with increasing
Grashof number Gr. However, for larger Gr values the secondary flow becomes
non-axisymmetric and Rec decreases with increasing Gr. Chen & Kuo (1990) have
also performed a linear stability analysis for axisymmetric disturbances and have
shown that the stability characteristics of the flow can be characterized in terms a
dimensionless parameter, Cb ≡ β(T1 − T2)(R2 − R1)

2Ω/ν, that signifies the ratio of
buoyant to viscous forces, where β is the thermal expansion coefficient, T1 and T2

are inner and outer cylinder temperatures respectively, R1 and R2 are inner and outer
cylinder radii respectively, Ω is the angular velocity of inner cylinder, and ν is the
kinematic viscosity of the fluid. Specifically, it has been demonstrated that increasing
Cb increases Rec for ∆T ≡ T1 − T2 > 0 while for ∆T < 0, Rec is decreased. In
addition, a non-zero Cb breaks the symmetry of Rec versus ∆T diagram. Overall,
the predictions of the linear stability analyses are in accord with the experimental
observations.

The effect of energetics on the linear stability of Taylor–Couette flow when the
two cylinders are maintained at equal temperatures while a constant heat source
is used to drive an axial flow has also been examined (Kolyshkin & Vaillancourt
1993). It has been demonstrated that over a large range of cylinder radii ratios
(0.4 6 R1/R2 6 0.95) and Pr (1 6 Pr 6 100), axisymmetric disturbances are the most
dangerous disturbances and the flow is destabilized as Pr and Gr are increased.

The above studies have examined the effect of energetics on transitions in Taylor–
Couette flow for small- to moderate-viscosity Newtonian fluids where radial tem-
perature gradients could lead to significant buoyant forces. Although highly viscous
liquids will be less susceptible to similar transitions, energetics could still play a sig-
nificant role in the stability of this class of fluids due to viscous dissipation. In fact,
recent linear stability analyses for viscoelastic Taylor–Couette flow by Al-Mubaiyedh,
Sureshkumar & Khomami (1999) have demonstrated that viscous dissipation gives
rise to new eigensolutions with significantly lower values of onset conditions and
different spatiotemporal characteristics than those predicted for isothermal viscoelas-
tic Taylor–Couette flow. Specifically, it was shown that in the presence of viscous
dissipation the primary transition is to a stationary and axisymmetric toroidal vortex
flow, in contrast to the case of isothermal flow where the primary transition is to a
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time-dependent and non-axisymmetric vortex flow (Avgousti & Beris 1993; Sureshku-
mar, Beris & Avgousti 1994; Joo & Shaqfeh 1994). Moreover, Al-Mubaiyedh et al.
(1999) have demonstrated that the evolution of this new solution family depends on
the Brinkman number Br, the Péclet number Pe, the gap width and the ratio of
polymeric to total viscosity. In particular, for a fixed Br, the new solution family
appears as Pe exceeds a critical value Pe∗. The value of Pe∗ is lowered as Br, the gap
width and the ratio of polymeric to total viscosity are increased.

The linear stability predictions of Al-Mubaiyedh et al. (1999) have been recently
confirmed experimentally by White & Muller (2000) where a transition to a stationary
and axisymmetric toroidal vortex flow was observed in a highly viscous Newtonian
(glycerin) and elastic (a polyisobutylene-based Boger fluid) fluids. Moreover, in accord
with the analysis, the onset conditions for the instability characterized in terms of
a Deborah number, De, that signifies the ratio of elastic to viscous forces, were
significantly lower than those measured for the isothermal flow.

The above studies have clearly demonstrated that thermal gradients induced by
viscous heating could significantly influence the stability of Taylor–Couette flow of
viscoelastic fluids. Since the thermoelastic instability observed by Al-Mubaiyedh et
al. (1999) is due to the coupling of the radial perturbation velocity and the base-state
temperature gradient, it is reasonable to expect that viscous dissipation could play a
significant role on the stability of Taylor–Couette flow of highly viscous Newtonian
fluids. Hence, the main objective of this study is to investigate the influence of viscous
dissipation on the stability of Taylor–Couette flow of highly viscous Newtonian liquids
where buoyancy-driven axial flows can be assumed negligible. Specifically, we have
performed linear and nonlinear stability analysis using realistic fluid properties and
geometric parameters where viscous heating effects could be significant. Moreover,
through our linear stability analysis we demonstrate how the stability characteristics
and onset conditions are modified in the presence of viscous heating. In turn, to
ascertain the utility of linear stability analysis to predict the onset conditions observed
experimentally, the nonlinear stability of the flow is also investigated using time-
dependent numerical simulations.

This paper is organized as follows. In § 2, we present the governing equations and
dimensionless parameters. Section 3 briefly outlines the solution procedure for the
eigenvalue problem that arises from the normal-mode linear stability analysis as well
as the time-dependent simulations used to examine the nonlinear stability of the flow.
The results of the analyses are discussed in § 4. Finally, conclusions are presented
in § 5.

2. Governing equations and dimensionless parameters
We consider the motion of a highly viscous Newtonian liquid confined between

two infinitely long, concentric, and independently rotating cylinders. The cylindrical
geometry is conveniently described by r, θ and z, representing the radial, azimuthal
(circular) and axial directions respectively. The inner and outer cylinders, denoted
by subscripts 1 and 2 respectively, have radii R1 and R2 and angular speeds Ω1 and
Ω2. The gap width, d ≡ R2 − R1, and the inner cylinder velocity, R1Ω1, are chosen
as the scales for length and velocity respectively. The scales of time and pressure
are given by d/R1Ω1 and ρ(R1Ω1)

2 respectively, where ρ is the fluid density. The
temperature is made dimensionless with a reference temperature T0, i.e. φ ≡ T/T0.
In this work, all cases considered correspond to a stationary outer cylinder, i.e.
Ω2 = 0.
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The temperature change considered in this study is of O(1) K, hence the fluid is
practically incompressible and the continuity equation is given by

∇ · v = 0. (1)

The equation of motion is written in dimensionless form

∂v

∂t
− v × ω = −∇P +

1

Re
∇ · [eε((1/φ)−1)κ], (2)

where ω ≡ ∇× v, P ≡ p+ v · v/2 and κ ≡ (∇v + ∇vt) are the dimensionless vorticity
vector, dynamic pressure and rate-of-deformation tensor respectively, and p is the
hydrodynamic pressure. The fluid viscosity is related to temperature by an Arrhenius
relationship with ε as the dimensionless activation energy defined as

ε ≡ ∆H

RT0

, (3)

where ∆H and R are the dimensional activation energy and the universal gas constant
respectively. The Reynolds number, Re, is defined as

Re ≡ ρR1Ω1d

η
, (4)

where η is the fluid viscosity evaluated at the reference temperature T0. The non-
isothermal effects considered in this work are due primarily to heat generation induced
by viscous dissipation. The energy equation is written as follows to account for viscous
dissipation:

PrRe

[
∂φ

∂t
+ v · ∇φ

]
= ∇2φ+

Br

2
eε((1/φ)−1)κ :∇v, (5)

where the Prantdl number, Pr, and the Brinkman number, Br, are defined as

Pr ≡ Cpη

k
(6)

and

Br ≡ η(R1Ω1)
2

kT0

, (7)

where Cp and k are the fluid specific heat capacity at constant pressure and thermal
conductivity respectively. The Brinkman number signifies the extent of viscous heating
in the flow. A modification of the isothermal flow instability will take effect through the
coupling between the temperature sensitivity of the fluid viscosity and the temperature
gradients generated by viscous heating. Therefore, it is useful to characterize viscous
heating of sensitive liquids in terms of the Nahme–Griffith number, Na. The Nahme–
Griffith number signifies the ratio of temperature rise due to viscous heating to the
temperature rise necessary to make a significant (i.e. O(1)) change in the viscosity. The
Nahme–Griffith number is related to the Brinkman number in the following manner:

Na ≡ |∂η/∂T |T=T0
(R1Ω1)

2/k = εBr. (8)

For highly viscous fluids (e.g. glycerin and oils) and for characteristic shear rates,
γ̇ ≡ R1Ω1/d, associated with the Newtonian Taylor–Couette flow, the Péclet and
Brinkman numbers are typically very large Pe ≡ Pr Re ∼ 105 and Br ∼ 10−2

(Na ∼ 0.25). Note that the Brinkman number is defined in (7) based on the absolute
reference temperature, T0, instead of the temperature drop ∆T . Therefore, a value of
Br ∼ 10−2 (i.e. η(R1Ω1)

2/k∆T ∼ 3) is typically large.
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Non-isothermal effects due to buoyancy have not been included in the above
set of governing equations. Buoyancy-induced instabilities in Taylor–Couette flow
could be of importance when the Grashof number, Gr ≡ ρ2gβ∆T (R2 − R1)

3/η2 is
O(1). However, in this study we are interested in examining whether a new mode
of instability in the Taylor–Couette flow can be obtained in absence of buoyancy
for highly thermally sensitive fluids. In fact, recent experimental studies by White
& Muller (2000) have shown that for highly viscous and thermally sensitive fluids,
buoyancy does not play a significant role in the onset conditions for the instability or
the post-critical dynamics.

Equations (1), (2) and (5) are supplemented with no-slip boundary conditions for
the velocities and constant wall temperatures at both cylinder surfaces. Moreover, for
infinitely long cylinders, end effects in the axial direction could be neglected; hence,
periodic boundary conditions are enforced in the axial and azimuthal directions.

The base state of Taylor–Couette flow is purely circular and the equation of motion
(2) simplifies to

d

dr

(
1

r

d

dr
(rvθ)

)
− ε

φ2
r

d

dr

(vθ
r

) dφ

dr
= 0. (9)

The steady-state and fully developed version of the energy equation (5) is a balance
between conduction and viscous dissipation:

1

r

d

dr

(
r
dφ

dr

)
+ Br eε((1/φ)−1)

[
r

d

dr

(vθ
r

)]2

= 0. (10)

Equations (9) and (10) constitute a nonlinear boundary value problem for which
solutions were obtained numerically.

3. Method of solution
As mentioned earlier, we are interested in examining the linear and nonlinear

stability of non-isothermal Taylor–Couette flow. The linear stability analysis is per-
formed utilizing standard normal-mode analysis. Specifically, infinitesimally small,
non-axisymmetric disturbances with axial wavenumber α and azimuthal wavenumber
ξ are introduced into the steady-state solution vector uss ≡ (P , vr, vθ, vz, φ)tss,

u = uss + û(r)ei(αz+ξθ−iσt), (11)

where i ≡ √−1, σ is the eigenvalue that is, in general, complex (σ ≡ σR +iσI ) and û(r)
is the vector of perturbation eigenfunctions. Substitution of (11) into the governing
equations and the boundary conditions described in § 2, and linearization about the
steady-state solution lead to a complex generalized differential eigenvalue problem of
the type

Aû = σBû, (12)

where A and B are linear operators that contain the spatial information resulting from
the linearization of (1), (2) and (5) along with the boundary conditions. The solution
to the differential eigenvalue problem is obtained numerically using a Chebyshev
pseudo-spectral collocation technique (Al-Mubaiyedh, Sureshkumar & Khomami
1999, 2000a, b). The linear stability analysis results reported in this work are based on
17 Chebyshev collocation points in the radial direction for the axisymmetric modes
(ξ = 0). Accurate computations of non-axisymmetric modes and high Pe require a
more refined discretization, i.e. 65 collocation points. All the results presented are
mesh converged; the computed eigenvalues are converged up to five decimal places.
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The nonlinear analysis is performed using time-dependent simulations. As will
be shown in § 4, over a wide range of the parameter space the most dangerous
disturbances of the non-isothermal Taylor–Couette flow are axisymmetric. Hence, we
have restricted our time-dependent simulations to axisymmetric flows.

The governing equations (1), (2) and (5) with boundary conditions are solved nu-
merically using Chebyshev–Fourier spectral expansions (Canuto et al. 1988). Specifi-
cally, the radial direction is expanded using Chebyshev polynomials, while the axial
direction is expanded using complex Fourier series, as follows:

u(t, r, z) =

M/2−1∑
k=−M/2

N∑
j=0

ûkj(t)e
ikαzΨj(r), (13)

where Ψj is the Chebyshev polynomial of degree N. In this numerical procedure
the unknown variables are expanded using equation (13), and a mixed Galerkin–
collocation spectral method (Sureshkumar et al. 1994) is used to generate a system of
ordinary differential equations for the spectral coefficients ûkj(t). Note that this system
of ODEs is singular due to the incompressibility constraint. To rectify this problem,
the pressure modes P̂00(t) and P̂0N(t) that do not affect the velocity are set equal to
zero. Time integration is performed using the implicit second-order Adams–Moulton
technique,

dûkj(t)

dt
≡ ûkj(t+ ∆t)− ûkj(t)

∆t
=
F̂kj(ûkj(t))|t+∆t + F̂kj(ûkj(t))|t

2
, (14)

where F̂kj(ûkj(t)) are the functions obtained from the spectral expansions. Conse-
quently, the resulting system of nonlinear algebraic equations (14) is solved for
ûkj(t+ ∆t) iteratively using a Newton–Raphson technique. Unless specified, the time-
dependent simulations results are obtained using (N,M) = (17, 16), in the radial
and axial directions respectively. We have used a dimensionless time step ∆t = 0.5.
Occasionally, we have used (N,M) = (25, 24) and smaller time steps to ensure con-
vergence. All the results presented are converged with respect to spatial and temporal
discretizations.

4. Results and discussion
4.1. Choice of fluid properties and operating conditions

The influence of viscous dissipation on the stability of Taylor–Couette flow is con-
sidered for highly viscous Newtonian liquids. In particular, we perform our analysis
using the glycerin that has been used by White & Muller (2002) to experimentally
investigate the influence of viscous heating on the stability of Taylor–Couette flow.
The physical properties of glycerin as functions of temperature are listed in table 1.
The viscosity of glycerin is very sensitive to temperature: an increase of 1 K within
the flow domain due to viscous heating will lead to a reduction of 8.7% in the
viscosity. Hence, it is expected that non-isothermal effects will significantly modify
the onset conditions as well as the spatiotemporal characteristics of the isothermal
instability. Throughout this work, we perform all analyses using the characteristic
shear rate, γ̇ ≡ R1Ω1/d, as a bifurcation parameter since it is independent of temper-
ature. Consequently, all dimensionless parameters are reported at T0 for a specified
γ̇. We implement a moderate gap width corresponding to δ ≡ R1/R2 = 0.827. This
ratio corresponds to the geometry of the Taylor–Couette apparatus used by White
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Relationship to absolute
Physical property temperature Value at 25 ◦C

1η (Pa s) η = η(T0) exp

(
7417

(
1

T
− 1

T0

))
0.94

2ρ (kgm−3) ρ = −0.6089T + 1442.4 1261

2CP (Jkg−1 K−1) Cp = 6.4289T + 501.42 2418

2k (W−1 m−1 K−1) k = 9.05× 10−5 T + 0.2584 0.285

1 White & Muller (2002).
2 Incropera & DeWitt (1990).

Table 1. Properties of glycerin.

& Muller (2000) to experimentally investigate the influence of viscous heating on the
stability of Taylor–Couette flow.

The choice of the temperature boundary conditions is also motivated by the
experiments of White & Muller (2000). Specifically, the flow cell used by White
& Muller (2000) has an aluminium inner cylinder and a glass outer cylinder. The
temperature of each cylinder is controlled by using two independent heat baths where
the temperature of each bath is maintained within ±0.1 K of a specified temperature.
It is anticipated that the temperature at the outer boundary, T2, will be higher than
the inner boundary, T1, due to the higher thermal resistance of glass compared to
aluminium. For this reason, we have considered two different Dirichlet boundary
conditions for temperature, namely ∆T (T2 − T1) = 0 and ∆T = 1 ◦C.

4.2. Linear stability analysis

Linear stability analysis of Taylor–Couette flow in the presence of viscous heating
is investigated over a wide temperature range for axisymmetric (i.e. ξ = 0) as well
as non-axisymmetric (i.e. ξ 6= 0) disturbances. The analysis is performed by varying
the base flow reference temperature, T0, from 10 ◦C to 60 ◦C. The critical shear rate
and the critical axial wavenumber are evaluated for each azimuthal wavenumber for
different values of T0. The critical Reynolds number is plotted as a function of the
Nahme–Griffith number in figure 1. Overall, for a wide range of Nahme–Griffith
numbers, the axisymmetric disturbances are the most dangerous disturbances. In the
limit of small Nahme–Griffith numbers, viscous heating effects are negligible and
the critical Reynolds numbers for ξ = 0, 1 and 2 are independent of Na and are
very close to each other, reminiscent of the isothermal Taylor–Couette instability.
(We have included results at small Na to demonstrate the asymptotic limit where
viscous heating is negligible. However, in this limit the fluid viscosity is relatively
small; hence buoyant effects might be of importance. However, the effect of buoyancy
on the stability of flow is beyond the scope of the present study.) In particular,
when ∆T = 0 and Na approaches zero, Rec for non-isothermal flow is increased
to the isothermal critical values, Rec = 101.29, 102.45 and 106.13 for ξ = 0, 1 and
2 respectively. Reducing the base-flow reference temperature leads to larger values
of Na. Consequently, the critical Reynolds number decreases with an increase in
the Nahme–Griffith number, indicating the destabilizing effect of viscous dissipation
(i.e. for Na = 0.3, the critical Reynolds numbers for the axisymmeteric mode are
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Figure 1. Linear stability analysis; Rec vs. Na using the physical properties of glycerin in table 1.
(a) ∆T = 0; (b) ∆T = 1 K.

Rec = 18.0 and 28.0 for ∆T = 0 and 1 K respectively). Moreover, the separation
between the Rec curves for the axisymmetric mode, ξ = 0, and the non-axisymmetric
modes, ξ = 1 and 2, is significantly enhanced as Na is increased.

The temporal character of the instability is sensitive to the temperature boundary
conditions. When the two cylinders are set at constant equal temperatures (see
figure 1a), a stationary instability, that is qualitatively similar to the isothermal
Taylor–Couette instability (Taylor 1923), is observed. On the other hand, when
the outer cylinder is set at a higher temperature than the inner cylinder, a new
axisymmetric solution family that is time-dependent is observed for Na < 0.57 (see
figure 1b). For Na > 0.57 and ∆T = 1 K, the critical eigenmode has a zero imaginary
part. However, when ∆T > 1 K the critical eigenmode remains complex for all Na
values investigated.

The critical axial wavenumbers, αc, for ξ = 0 are plotted in figure 2 for ∆T = 0 and
1 K. For Na < 0.002, the critical axial wavenumbers for ∆T = 0 and 1 K are constant
and equal to the isothermal critical value of 3.15. αc for ∆T = 0 decreases to 2.8 in
the limit of large Na. Similarly, αc for ∆T = 1 K decreases to 2.5 for 0.2 < Na < 0.57.
Consequently, the αc curve for ∆T = 1 K undergoes a discontinuity when the station-
ary eigensolution family merges with the time-dependent one at Na = 0.57 (i.e. αc
increases to 2.8 at Na = 0.6). The critical frequency, σIc, corresponding to the time-
dependent instability for ∆T = 1 K is also plotted in figure 2. For small Nahme–
Griffith numbers, the frequency of the secondary flow predicted by the linear stability
analysis is almost constant and relatively large, σIc ∼ 10−3. For Na > 0.4 the frequency
decreases sharply to very small values (i.e. a very slow time-dependent secondary flow).
White & Muller (2002) have recently performed detailed experiments to investigate
the influence of Brinkman number on the stability of Taylor–Couette flow using a
highly viscous mixture of glycerin and water. Their results support our observations
for different values of Br. Specifically, by varying the operating temperature they
observe that the vortex speed increases as the Brinkman number is reduced.

The sensitivity of the critical Reynolds number to the temperature boundary con-
ditions is demonstrated in figure 3 for axisymmetric disturbances. Although, it is



Effect of viscous heating on Taylor–Couette flow 119

3.5

3.0

2.5

1.5

2.0

1.0

0.5

0

αc

Time-dependent
Stationary

∆T = 1K

∆T = 0 10 – 1

10 – 2

10 – 3

10 – 4

10 – 5

10 – 6

σIc

10 110 010 – 4 10 – 3 10 – 2 10 – 1

Na

∆T = 1K

Figure 2. Linear stability analysis; αc and σIc vs. Na for ξ = 0.

expected that ∆T will be positive under the experimental conditions of White &
Muller (2000), the analysis is extended here to negative values of ∆T in order to pro-
vide a complete description of the onset conditions. The temperature difference across
the annular gap was restricted to relatively small values (i.e. −1.5 6 ∆T 6 1.5 K) to
minimize the effects of buoyancy. For relatively small values of |∆T |, the critical con-
ditions correspond to a stationary mode of instability. Moreover, the neutral curve (i.e.
in terms of Rec) as a function of ∆T is not symmetric under these conditions. Specifi-
cally, as shown in figure 3(a) for T0 = 33 ◦C, the dependence of the critical Reynolds
number on ∆T for the stationary mode is parabolic for −1.3 6 ∆T 6 0.375 K with
a minimum at ∆T = −0.5 K for which Rec = 32.45. In figure 3(b), for T0 = 43 ◦C
the parabolic region for the stationary mode shrinks to −0.6 6 ∆T 6 0.15 K with
a minimum at ∆T = −0.375 K for which Rec = 62.63. In addition, it is shown that
for sufficiently large base-flow temperature gradients, time-dependent instabilities
could be observed. As shown in figure 3, the critical Reynolds numbers for the
time-dependent modes increase linearly as ∆T is increased. The frequencies of the
time-dependent modes as well as the range of ∆T where they are observed increase as
the reference temperature is increased. This is consistent with the earlier observation
in figure 2, since the viscosity is lower at higher temperatures, leading to smaller
values of the Nahme–Griffith number for which the frequency is higher.

4.3. A comparison of linear stability predictions and experimental observations

We performed a linear stability analysis for the non-isothermal Taylor–Couette flow
at T0 = 18.5 ◦C using the fluid properties of glycerin used by White & Muller (2000).†
The experiment was performed using glycerin at T0 = 18.5 ◦C with a viscosity of
1.36 Pa s and Pr = 11 000. The transition to the secondary flow was reported at a
critical Reynolds number, Rec = 12.75 that is significantly smaller than the transition

† White & Muller (2002) used a glycerin sample in their experiment that contained some moisture
due to long time exposure of the fluid to air. Hence we have used a slightly lower viscosity in our
computations than the one indicated in table 1 (White & Muller 2000, personal communication).
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Figure 3. Linear stability analysis; Rec vs. ∆T for ξ = 0. (a) T0 = 33 ◦C; (b) T0 = 43 ◦C.

Reynolds number observed for the isothermal Taylor–Couette flow (i.e. Rec = 101.29).
Moreover, the secondary flow was observed to be time-dependent and axisymmetric
with vortices moving slowly parallel to the cylinder axis with a speed of approximately
0.0023 gap widths per second.

The results of our analysis clearly show that the critical Reynolds number and
the spatiotemporal character of the instability depend on the base-flow temperature
boundary conditions. Specifically, for ∆T = 0, the critical conditions are Rec = 12.61,
αc = 2.8, ξ = 0 and σIc = 0. Hence, the secondary flow is predicted to be stationary and
axisymmetric. On the other hand, for ∆T = 1 K, the predicted critical conditions are
Rec = 14.32, αc = 2.55, ξ = 0 and σIc = ±2.6× 10−5. Therefore, an axisymmetric and
time-dependent secondary flow is predicted. The predicted Rec when the two cylinders
are assumed to be at an equal temperature is extremely close to the experimental
value; however, the instability in this case is stationary which is in disagreement
with the experimental observation. In contrast, the spatiotemporal character of the
secondary flow when the outer cylinder is at a temperature 1 K higher than the
inner one is similar to the experimental observation (i.e. a very slow time-dependent
secondary flow). However, the predicted Rec exceeds the experimental value by 12%.
This difference can be rationalized in terms of two important factors. First, the
difference could be related to experimental errors associated with measuring the onset
conditions of the secondary flow (i.e. White & Muller (2000) do not report error bars
associated with the measurements of the critical conditions). Secondly, it is possible
that the bifurcation is subcritical. In this case, the experimentally measured critical
Reynolds number can only be predicted from a nonlinear stability analysis.

Overall, our analysis clearly depicts that the onset conditions and the temporal
characteristics of the classical centrifugal instability are significantly affected by vis-
cous heating. Specifically, the transition to secondary flow in the presence of viscous
heating occurs at a critical Reynolds number that is an order of magnitude smaller
than the critical value for the isothermal flow. Hence, despite the minor discrepancies
between the linear stability analysis predictions and the experimental observations,
the dramatic destabilization of Taylor–Couette flow observed by White & Muller
(2000) can clearly be attributed to viscous dissipation.
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Critical
T0 parameter ∆T (T2 − T1) = 0 ∆T (T2 − T1) = 1 K

γ̇ 77.63 s−1 91.90 s−1

αc 2.83 2.51
33 ◦C

σIc 0 2.89× 10−4

Rec 34.50 40.85
γ̇ 70.29 s−1 86.05 s−1

αc 2.95 2.75
43 ◦C

σIc 0 1.02× 10−3

Rec 66.91 81.90

Table 2. Critical states used for time-dependent simulations.

4.4. Time-dependent simulations

The nonlinear evolution of the non-isothermal Taylor–Couette instability is investi-
gated by performing time-dependent simulations. In particular, a bifurcation analysis
is conducted to identify the supercritical and subcritical characteristics of the sec-
ondary flow patterns. The time scale for nonlinear evolution of the non-isothermal
fully developed flow is extremely large (i.e. very small temporal frequency); hence a
fully implicit time integration scheme that allows large time steps has been utilized.
Such an algorithm is essential in performing CPU efficient simulations.

Motivated by the difference between experimentally observed critical conditions and
the linear stability predictions, we perform the time-dependent simulations using two
boundary conditions for the energy equation, i.e. ∆T = 0 and 1 K. The computations
are performed for a fixed axial wavenumber representing the critical value obtained
from the linear stability analysis. The time-periodic instabilities predicted by the
linear stability analysis under the experimental conditions of White & Muller (2000)
correspond to very slowly evolving secondary states. Specifically, the dimensionless
frequency is very small, σI = 2.6× 10−5 (i.e. an oscillation period, tp = 241 661).
Since realization of a fully developed non-isothermal equilibrium state requires time
integration of at least 20 periods, simulations of such slowly evolving secondary states
are computationally prohibitive. Therefore, in order to gain insight into the nonlinear
evolution of the non-isothermal instability, we restrict our simulations to reference
temperatures where viscous effects are important and the temporal frequency of the
secondary flow is larger than those corresponding to the experiments of White &
Muller (i.e. 0.07 < Na < 0.2, see figure 2). Two reference temperatures have been
selected to perform the simulations, T0 = 33 ◦C and 43 ◦C. The results of the linear
stability analysis under these conditions are given in table 2 for both thermal boundary
conditions.

The initial condition for performing the nonlinear stability analysis is constructed
by superposition of the eigenfunctions associated with the most dangerous eigenvalue
and the steady-state solution. In particular, for stationary instabilities we have used
the following initial condition:

u(t = 0, r) = uss(r) + Re(χû(r)eiαz), (15)

where χ is chosen to ensure that the perturbation is small compared to the steady-state
solution. The linear stability analysis has revealed that the leading eigenvalues for the
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Figure 4. Time-dependent evolution of the radial velocity at (r = (r1 + r2)/2 and z = π) for
T0 = 33 ◦C, ∆T = 1 K, α = 2.51 and γ̇ = 93 s−1. Amplitude and frequency of the final states for the
two different initial conditions are identical.

time-dependent instability correspond to two pairs of complex-conjugate eigenvalues.
This corresponds to a degenerate Hopf bifurcation for which two possible secondary
flow patterns are possible. One of the patterns corresponds to a rotating wave with
axial symmetry around the z-axis, that travels axially parallel to the cylinder axis.
The second pattern is that of a standing wave that oscillates horizontally in the radial
direction. These flow patterns have been previously identified by considering the
symmetries of the bifurcating branches after onset of instability (for more details see
Golubitsky, Schaeffer & Stewart 1988, Avgousti, Liu & Beris 1993 and Sureshkumar
et al. 1994). We have followed the same procedure as Avgousti et al. (1993) and
Sureshkumar et al. (1994) in constructing the initial conditions for the time-dependent
modes corresponding to either the rotating or standing wave patterns.

The simulations are performed starting from an initial condition at a shear rate
that is slightly beyond the bifurcation point. Time integration is performed until
an equilibrium state is reached. The time-dependent evolution of the amplitude for
T0 = 33 ◦C, ∆T = 1 K, α = 2.51 and γ̇ = 93 s−1 is shown in figure 4 for the rotating
and the standing waves. The amplitudes corresponding to the rotating and standing
waves increase gradually to different intermediate states (see the time between 200 000
and 600 000). These intermediate patterns become unstable and undergo a transition
to a final time-periodic state that is independent of the initial condition. The theory
of Hopf bifurcation in the presence of symmetries (Golubitsky et al. 1988) states
that neither the rotating wave nor the standing wave solutions are stable for a
subcritical Hopf bifurcation. Hence, these simulations suggest that the bifurcation
is subcritical. Motivated by the temporal behaviour of the bifurcated solutions, we
performed a continuation from the final state by varying the shear rate above and
below the critical value. Figure 5 depicts the bifurcation diagram for the amplitude†
† In this work we define the radial velocity amplitude for time-periodic states as the difference

between maximum and minimum values of the time sequence. The amplitude for stationary states is
the exact value of the radial velocity. All amplitudes are evaluated at the centre of the computational
domain.
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Figure 5. Bifurcation diagram for T0 = 33 ◦C, ∆T = 1 K and α = 2.51.

as a function of Re − Rec for T0 = 33 ◦C, ∆T = 1 K and α = 2.51. The bifurcation
in this case is subcritical and the amplitude exhibits a hysteresis loop in the region
−0.111 < Re−Rec < 0. The subcritical Hopf bifurcation character of the instability is
consistent with the justification provided earlier for the higher Rec predicted by linear
stability analysis for the time-dependent instability compared to the experimental Rec
value (White & Muller 2000). The frequency of the time-dependent secondary flow
is also shown in figure 5. As expected, the frequency increases monotonically with
shear rate. Moreover, the frequency increases linearly in the vicinity of the bifurcation
point.

In figure 6, the radial velocity contours are plotted on the (r, z)-plane, for the
final state in figure 4 at different times where the amplitude of the radial velocity is
maximum, zero and minimum. The structure of the secondary state corresponds to
axially traveling axisymmetric vortices. This structure is consistent with the secondary
flow pattern that has been observed experimentally by White & Muller (2000).

The time evolution of the radial velocity at the centre of the computational domain
is shown in figure 7 for the stationary instability at T0 = 33, for ∆T = 0, α = 2.83 and
γ̇ = 79 s−1. This profile is similar to the isothermal case where the velocity increases to
a constant value. However, the time scale to reach the final state for the non-isothermal
flow is much longer than that for the isothermal flow (i.e. approximately two orders of
magnitude larger). A contour plot of the radial velocity at the final state is also shown
in figure 7. This structure corresponds to a stationary and axisymmetric toroidal vortex
flow. The bifurcation diagram for T0 = 33, ∆T = 0 and α = 2.83 is shown in figure 8.
The stationary bifurcation is supercritical, similar to the isothermal flow, and the
amplitude obeys the following relationship: Amplitude = 1.9×10−5

√
Re− Rec. As the

shear rate is increased, a secondary bifurcation occurs and the stationary supercritical
branch undergoes a transition to a time-dependent branch at Re− Rec = 8.88. The
time-dependent secondary bifurcation branch has characteristics similar to the time-
dependent instability for the case ∆T = 1 K (i.e. time-dependent vortices moving
axially are observed; see figure 9). Overall, the frequency of the flow resulting from
this secondary bifurcation is smaller than that for the case where ∆T = 1 K and it
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Figure 6. Radial velocity contours for the final state in figure 4 for T0 = 33 ◦C, ∆T = 1 K, α = 2.51
and γ̇ = 93 s−1. The radial velocity vr is shown in the (r, z)-plane in a time period where amplitude
is (a) maximum, (b) zero and (c) minimum.

increases very sharply as the shear rate is increased. Moreover, there exists a hysteresis
loop in the region 8.17 < Re− Rec < 8.83.

In order to ascertain the robustness of the predicted bifurcation structures (i.e.
subcritical Hopf bifurcation for the time-dependent family and supercritical bifur-
cation for the stationary one), we have performed another set of simulations at a
higher reference temperature, T0 = 43 ◦C. The bifurcation diagram and the temporal
frequency of the bifurcated solution are shown in figure 10 for T0 = 43 ◦C, ∆T = 1 K
and α = 2.75. Similarly to the previous case, the time-dependent mode undergoes a
subcritical bifurcation; however, the hysteresis loop is large (−1 < Re − Rec < 0).
Once again, both rotating and standing waves are unstable and they eventually evolve
to the same final state. Hence, the computations at T0 = 43 ◦C are consistent with
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the previous case as T0 = 33 ◦C. The structure of the time-dependent secondary
flow at T0 = 43 ◦C is qualitatively similar to the previous case with T0 = 33 ◦C (i.e.
axisymmetric vortices moving axially). However, the wave speed is about ten times
faster in this case due to the smaller thermal diffusion time scale.

The bifurcation diagram for T0 = 43 ◦C, ∆T = 0 and α = 2.95 is shown in
figure 11. The bifurcation of the stationary family is again supercritical and the
amplitude obeys the following expression: Amplitude = 2.65 × 10−5

√
Re− Rec. A
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secondary bifurcation occurs for Re− Rec > 10.2 giving rise to a time-dependent
flow. No hysteresis is observed for the secondary bifurcation; however, before the
transition to the time-dependent state occurs, the amplitude begins to deviate from
the 2.65× 10−5

√
Re− Rec curve at Re− Rec ≈ 6.5.

Overall, our nonlinear stability analyses at the two reference temperatures indicate
similar qualitative behaviour of the non-isothermal instability. Specifically, when
∆T = 1 K the bifurcation corresponds to a subcritical Hopf bifurcation; whereas when
∆T = 0 the primary bifurcation corresponds to a supercritical stationary bifurcation
reminiscent of the Taylor vortex flow. Subsequently, the stationary secondary flow
undergoes a bifurcation to a time-dependent flow. The flow patterns of the time-
dependent states corresponding to the secondary bifurcation for ∆T = 0 and the
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Figure 11. Bifurcation diagram for T0 = 43 ◦C, ∆T = 0 and α = 2.95.

primary bifurcation for ∆T = 1 K are similar to the experimental observations (i.e.
time-dependent vortices moving axially). However, the speed of the axially moving
vortices for ∆T = 0 is slower. Overall, the time-dependent states observed in these
simulations are similar to the experimentally observed time-dependent secondary
flow (i.e. slowly moving axial vortices). However, much closer overall agreement (i.e.
onset conditions and spatiotemporal characteristics of the secondary flow) with the
experimental results are obtained when the thermal boundary condition ∆T = 1 K is
used.
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4.5. Mechanism of the non-isothermal instability

In this section, we discuss the mechanism of the non-isothermal instability. Our
analysis is based on the linearized equations of energy and motion. In order to isolate
the driving force behind the non-isothermal instability, the critical conditions are
computed first, and in turn by using scaling arguments some terms are eliminated from
the linearized equations and the critical conditions are re-computed. The linearized
equations of energy and motion are

∂φ̂

∂t
= −vss · ∇φ̂− v̂ · ∇φss +

1

Pr Re
∇2φ̂

+

1︷ ︸︸ ︷
Br

2Pr Re
eε((1/φ)−1)

(
κss :∇v̂ + κ̂ :∇vss − ε

φ2
ss

κss :∇vssφ̂
)
, (16)

∂v̂

∂t
= vss × ω̂ + v̂ × ωss − ∇P̂ +

1

Re
eε((1/φ)−1)

(
∇2v̂ − ε

φ2
ss

∇2vssφ̂

)

− 1

Re

ε

φ2
ss

eε((1/φ)−1)


2︷ ︸︸ ︷

κss · ∇φ̂+

3︷ ︸︸ ︷
∇φss · κ̂−

4︷ ︸︸ ︷
(ε/φ2

ss + 2/φss)(∇φss · κss)φ̂
 , (17)

where the variables with a hat are perturbation quantities while the variables with the
subscript ss are steady-state quantities. Based on a scaling argument, the influence of
the viscous dissipation term (labelled 1) on the right-hand side of the linearized energy
equation (16) can be ignored due to the fact that Br ∼ O(10−2) and Pr Re ∼ O(104).
Indeed we have re-calculated the critical conditions without this term and found them
to be identical to those presented in table 2 (note that the viscous dissipation terms
are kept in the base flow solution). The order of magnitude of the thermal diffusion
term is very small compared to the convection terms since 1/Pr Re ∼ O(10−4).

Moreover, the term vss · ∇φ̂ simplifies to vθss/riξφ̂, which vanishes identically since
all the computed critical conditions are axisymmetric (ξ = 0) for the non-isothermal
instability. Therefore, the remaining term, v̂ · ∇φss (i.e. coupling of the perturbation
velocity with the base flow temperature gradient), on the right-hand side of the
linearized energy equation appears to play a very significant role in defining the
critical conditions.

Clearly, the term v̂ · ∇φss is coupled with the momentum conservation due to the
thermal sensitivity of the fluid. To be more specific, a nonlinear coupling between the
energy and momentum conservations arises due to the term ∇(eε((1/φ)−1)) · κ in (2). To
demonstrate that this nonlinear coupling is the most important driving force behind
the instability, we set the term ∇(eε((1/φ)−1)) ·κ = 0, and evaluate the critical conditions
at T0 = 33 ◦C, ∆T = 0 and δ = 0.827. The analysis reveals that the critical conditions
for ∇(eε((1/φ)−1)) · κ = 0 are αc = 3.15 and Rec = 91.3. These critical conditions are
very different from those reported in table 2 (i.e. αc = 2.83 and Rec = 34.5) and are
very close to the isothermal case, αc = 3.15 and Rec = 101.3. It should be noted that
the critical Reynolds number reported for the case ∇(eε((1/φ)−1)) · κ = 0 was calculated
based on the viscosity evaluated at the reference temperature T0. However, if this crit-
ical Reynolds number is rescaled by using the gap-averaged viscosity, η̄ =

∫ r2
r1
η(φss)dr,

by utilizing the base flow temperature, its value is increased to 100.0. Hence, by elim-
inating the term ∇(eε((1/φ)−1)) · κ, the base flow equations (9) and (10) decouple, and
therefore, as expected, the onset conditions are similar to the isothermal flow.
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Figure 12. Radial pressure gradients at T0 = 33 ◦C for (a) base state and (b) perturbation eigen-
functions. Isothermal, Re = 101.3 and α = 3.15 (dashed curve); non-isothermal, stationary, ∆T = 0,
Re = 34.5 and α = 2.83 (dotted curve); non-isothermal, time-dependent, ∆T = 1, Re = 40.85 and
α = 2.51 (solid curve).

The above analysis clearly demonstrates that the term ∇(eε((1/φ)−1)) · κ (terms labelled
2, 3 and 4 in the linearized equation of motion, (17)) plays a significant role in the onset
conditions for the non-isothermal instability. By following an elimination procedure
we have found that terms 3 and 4 are insignificant compared to term 2. Specifically,
we have re-calculated the critical conditions for T0 = 33 ◦C, ∆T = 0 and δ = 0.827
after eliminating terms 3 and 4 from (17) and retaining term 2 and found them to be
identical to those reported in table 2 (i.e. αc = 2.83 and Rec = 34.5).

In the above analysis, we have clearly demonstrated that there are two important
terms in the governing perturbation equations that determine the dynamics of the non-

isothermal Taylor–Couette flow. The two terms are v̂ · ∇φss and κss · ∇φ̂. For axisym-

metric disturbances, these two terms simplify to v̂r∂φss/∂r and (∂νθss/∂r−vθss/r)∂φ̂/∂r,
respectively. Hence, the mechanism of the non-isothermal instability for thermally sen-
sitive fluids is as follows: fluctuations in the temperature are created as a result of
the coupling of the radial perturbation velocity, v̂r , and the base-state temperature
gradient, ∂φss/∂r. In turn these temperature fluctuations significantly modify the vis-
cosity due to the thermal sensitivity of the fluid. This in turn results in a significant
reduction in dissipation of disturbances by the viscous stress terms in the momentum
equation. Hence, the flow is significantly destabilized. To quantify the reduction in
the dissipation provided by the viscous stress terms in the momentum equation, we
have performed a mechanical energy balance on the linearized momentum equation
and observed that the dissipation provided by the viscous stress terms is significantly
reduced in presence of a base-flow temperature gradient.

The above mechanism suggests that the onset conditions for the isothermal Taylor–
Couette instability will be modified as a result of a coupling between the momentum
and the energy equations for highly thermally sensitive fluids. Since the isothermal
Taylor–Couette instability is caused by the stratification of angular momentum across
the annular gap, we have examined how the radial pressure gradient that is balanced
by the centrifugal force is affected in the presence of significant viscous heating.

Figure 12 depicts the base-flow radial pressure gradients as well as the perturbation
eigenfunctions for three cases evaluated at the critical conditions for δ = 0.827.
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non-isothermal, stationary, ∆T = 0, Re = 35.11 and α = 2.83 (dotted curve); non-isothermal,
time-dependent, ∆T = 1 K, Re = 41.34 and α = 2.51 (solid curve).

Clearly there is very little difference between the steady pressure gradient profiles for
the three cases. This suggests that the modifications to the pressure gradient arise
due to the perturbations. Specifically, one expects that in presence of thermal effects
the pressure disturbances are not dissipated as effectively as the non-isothermal flow.
This is illustrated in figure 12(b) where the perturbation pressure eigenfunctions for
the three cases are depicted. Clearly, the fluctuations around the mean pressure are
more significant for the non-isothermal cases. However, the exact enhancement of the
non-isothermal pressure gradients compared to the isothermal cannot be ascertained
by examining the eigenfunctions as their scale is arbitrary. Therefore, in order to
ascertain the nonlinear coupling between the energetics and momentum conservation
that gives rise to reduced critical Reynolds number, we have utilized the results of
our time-dependent simulations. Specifically, the axially averaged (i.e. in one unit cell)
radial pressure gradient that is a direct measure of the centrifugal force has been
examined at shear rates slightly above the critical conditions in figure 13. Figure 13(a)
shows that the dimensionless pressure drop for the isothermal flow at Re = 102 is
significantly lower than those for the non-isothermal flows with Re = 35.11 for the
stationary mode and Re = 41.34 for the time-dependent flow. Note that the pressure
is made dimensionless by scaling it with ρ(R1Ω1)

2. Therefore, the profiles were re-
plotted in figure 13(b) by multiplying the average pressure gradient with Re2 to make
it independent of the inner-cylinder rotation speed. Clearly, the rescaled pressure
gradients for the isothermal and non-isothermal flows are very comparable with
each other. In other words, the coupling between the energetics and the momentum
conservation gives rise to an enhanced centrifugal force leading to a significant
reduction in the critical Reynolds number.

5. Conclusions
The influence of viscous heating on the stability of Taylor–Couette flow of highly

viscous Newtonian liquids has been theoretically examined. The parameter space
for the analysis has been motivated by the recent experiments of White & Muller
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(2000) aimed at studying the flow transitions of a highly viscous Newtonian fluid in
a Taylor–Couette device.

The stability analysis clearly depicts that viscous heating leads to significant desta-
bilization of the flow. The instability arises as a result of viscous dissipation due
to the coupling between the perturbation radial velocity with the base-state radial
temperature gradient, which creates a fluctuation in the temperature gradient that
couples with the momentum conservation through the base-flow shear stress giving
rise to an enhanced centrifugal force and a reduction in the critical Reynolds num-
ber. The dramatic destabilization predicted by the analysis is in agreement with the
experimental observations of White & Muller (2000). Moreover, if T2 is assumed to
be slightly higher than T1 the results of the analysis are in good agreement with the
experiments both in terms of the onset conditions and the spatiotemporal character
of the secondary flow.

Our nonlinear stability analysis indicates that the time-dependent secondary flow
(i.e. when T2 > T1) appears as a result of a subcritical Hopf bifurcation, while the
stationary secondary states are the result of a supercritical bifurcation. Moreover, the
qualitative structure of the predicted time-dependent secondary state agrees well with
the experimental observations of White & Muller (2000), i.e. vortices moving slowly
along the cylinder axis.

The significant destabilization observed in the presence of viscous hearing arises as
the result of the coupling of perturbation velocities and the base-state temperature
gradient that gives rise to fluctuations in the radial temperature distribution. Due to
the thermal sensitivity of the fluid these fluctuations greatly modify the fluid viscosity
and reduce the dissipation of disturbances provided by the viscous stress terms in the
momentum equation.
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