
The influence of polymer concentration and chain
architecture on free surface displacement flows

of polymeric fluids

Gandharv Bhatara

Department of Chemical Engineering, Stanford University, Stanford,
California 94305

Eric S. G. Shaqfeh

Departments of Chemical and Mechanical Engineering, Stanford University,
Stanford, California 94305

Bamin Khomamia)

Materials Research Laboratory, Department of Chemical Engineering, Washington
University, St. Louis, Missouri 63130

(Received 19 October 2004; final revision received 16 June 2005�

Synopsis

We examine the effect of polymer concentration and chain architecture on the steady state
displacement of polymeric fluids by air in between two infinitely long closely spaced parallel
plates, i.e., Hele-Shaw flow. A stabilized finite element method coupled with a pseudosolid domain
mapping technique is used for carrying out the computations. The constitutive equations employed
in this study are the Finitely Extensible Nonlinear Elastic–Chilcott Rallison �FENE-CR� and the
Finitely Extensible Nonlinear Elastic–Peterlin �FENE-P� models for dilute solutions, the Giesekus
constitutive equation for dilute, semidilute and concentrated solutions, and the Extended Pom-Pom
�XPP� constitutive equation for linear and branched polymeric melts. Our study indicates the
presence of a recirculation flow at low Ca and a bypass flow at high Ca irrespective of polymer
concentration and chain architecture. We show that the interfacial dynamics in both the
recirculation and the by-pass flow depend on extensional hardening and shear thinning
characteristics of the fluids. In the recirculation flow, we observe the formation of normal elastic
stress boundary layers in the capillary transition region, an accompanying increase in the
film thickness and a compression of the bubble in the capillary transition region, at moderate Wi.
In the bypass flow, in addition to the elastic stress boundary layer in the capillary transition
region, an additional stress boundary layer is observed at the tip of the bubble. The amount of
film thickening, the magnitude of the stress in the stress boundary layer and the amount of bubble
compression are largest for the most extensional hardening fluids and reduce with decreasing
extensional hardening and increasing shear thinning. We show that the film thickness is determined
by two competing forces, i.e., normal stress gradients in the flow direction, in the capillary
transition region �recirculation flow� and the tip region �bypass flow� and shear stress gradients
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in the gap direction. For both the recirculation and the bypass flow, we show how the film
thickness scales with fluid normal stresses and shear viscosities, and develop correlations for
the film thickness as a function of Ca and Wi. © 2005 The Society of Rheology.
�DOI: 10.1122/1.2000969�

I. INTRODUCTION

The displacement of Newtonian and viscoelastic fluids by air in long narrow tubes
plays a central role in many industrial applications such as polymer processing, coating
technology, gas-assisted injection molding and enhanced oil recovery �Taylor �1961�,
Cox �1962�, Bretherton �1961�, Bonn et al. �1995�, Ruschak �1985�, Coyle et al. �1990�,
Poslinski et al. �1995��. Consequently, numerous researchers have focused their attention
on Newtonian displacement flows in a variety of geometries to better understand the
interfacial dynamics of free surface flows and prevent free surface instabilities that occur
in this class of flows �Pearson �1960�, Pitts and Greiller �1961�, Sullivan and Middleman
�1979�, Coyle et al. �1990�, Rabaud et al. �1990��. However, the number of studies
dealing with viscoelastic fluids is very limited �Shaqfeh �1995�, Ruschak �1985�, Larson
�1992��. To date, most studies have been concerned with film thickness measurements
�thickness of the film formed when the fluid is displaced by air� since in most industrial
applications, control and uniformity of the film thickness is of primary importance.
Hence, our primary focus in this paper will be on examining the influence of polymer
concentration and chain architecture on film thickness in a model free surface displace-
ment flow.

In case of Newtonian fluids, the first experimental studies were carried out by Taylor
�1961� and Cox �1962� who measured the film thickness as a function of Ca �where Ca
is the Capillary number, defined as the ratio of viscous forces to surface tension� obtained
when a viscous fluid is displaced out of a tube by an air bubble. The thickness of the film
left on the walls by the displaced fluid was observed to increase with increasing Ca.
Bretherton �1961� conducted an asymptotic analysis, in addition to experiments, and
found good agreement between his asymptotic theory and the experimentally measured
film thickness at vanishingly small Ca. Reinelt and Saffman �1985� obtained film thick-
ness results using a finite difference scheme and observed a film thickening effect with
increasing Ca. More recently, Park and Homsy �1984� have developed a theory describ-
ing two-phase displacement in the gap between closely spaced planes under the assump-
tions of small Ca and ratio of gap width to transverse characteristic length, and subse-
quently showed that the film thickness scales as Ca1/3.

Turning to the literature on viscoelastic fluids, we find a scarcity of literature in both
computational and experimental aspects of the problem. Bonn et al. �1995� using solu-
tions of polyethylene oxide �PEO� reported an increase in the film thickness over that
found for Newtonian fluids. Linder et al. �2002� carried out experiments in a Hele-Shaw
cell geometry and observed a film thickness increase over that found for Newtonian fluids
using PEO, and a film thickness decrease using xanthane. They attributed the film thick-
ening effect for PEO to the high elongational viscosity and large normal stresses that
PEO exhibits, although no clear correlations were developed with Wi. Huzyak et al.
�1997� reported strong film thickening effects using highly elastic, nonshear thinning,
polyisobutene-polybutene �PIB-PB� based Boger fluids. Lee et al. �2005� in an experi-
mental study, of a free surface displacement flow of PIB-PB Boger fluids under gravity
stabilization in an eccentric cylinder geometry, found significant film thickening due to
presence of elasticity. The first theoretical study of a free surface displacement flow of a
viscoelastic fluid was carried out by Ro and Homsy �1995�. Specifically, the authors

1/3 1/3
formulated a double perturbation expansion in powers of Ca and Wi /Ca , �where Wi
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is the Weissenberg number, and it provides a measure of the elasticity of the flow through
the relaxation time of the polymer� and concluded that for small values of Wi /Ca1/3, the
fluid elasticity induces resistance to streamwise straining and hence reduces the film
thickness. However, this theory is valid for small values of Ca and Wi.

Besides the aforementioned experimental and theoretical contributions, numerical
studies have been performed by Pasquali and Scriven �2002�, Lee et al. �2002�, and
Bhatara et al. �2004�, on the steady-state displacement of viscoelastic fluids by an air
bubble. Specifically, Pasquali and Scriven �2002� examined the flow dynamics of air
displacing fluid for a slot coating flow using dilute and semidilute polymer solutions.
They observed the formation of layers of molecular stretch under the free surface down-
stream of the stagnation point, in the capillary transition region. Furthermore, they
showed that the layers of molecular stretch are largest for the extensible and semiexten-
sible molecules and effectively smaller for more rigid molecules. Lee et al. �2002�,
examined both the Hele-Shaw cell geometry and the slot coating geometry for dilute
polymer solutions using the Oldroyd-B, FENE-CR and FENE-P constitutive equations. In
the Capillary number regime considered in their study �i.e., Ca�1.0�, the flow is char-
acterized by a recirculation pattern and the authors show the formation of elastic normal
stress boundary layers in the capillary transition region at moderate values of Wi. Fur-
thermore, the authors observed that the formation of these stress boundary layers gener-
ates a strong positive normal stress gradient in the flow direction of the capillary transi-
tion region that results in film thickening. In addition, it is suggested that the formation of
these stress boundary layers is due to the planar extensional nature of the flow near the
free surface. Bhatara et al. �2004� extended the FENE-CR simulations to a much larger
range of Ca and Wi and also incorporated the effect of gravity and channel divergence.
They identify the presence of two distinct flow regimes. In the absence of gravity, a
recirculation flow at low Ca �Ca�1.0� and a bypass flow at high Ca �Ca�1.0�. In the
recirculation flow, in addition to the film thickening effect, the authors observe a menis-
cus invasion phenomenon when the stresses in the boundary layer become very large. In
addition, it is also ascertained that the formation of the elastic normal stress boundary
layer is mostly a local phenomenon, largely independent of geometrical considerations.
Specifically, by increasing the channel divergence the onset of the stress boundary layer
and the accompanying film thickening effect is delayed to higher Wi. However, the film
thickness normalized with the maximum normal stress in the elastic stress boundary layer
collapses onto a single curve.

Motivated by this fact, we have considered the effect of concentration and chain
architecture on the flow dynamics of the air displacing fluid flow in a Hele-Shaw cell
geometry to ascertain whether the film thickness can be estimated based on specific
material properties and the dynamics of the localized stress boundary layers near the free
surface. More specifically, we attempt to draw correlations between film thickness and
normal stresses in the localized stress boundary layer near the free surface and the
rheological characteristics of the fluid model, which in turn indirectly relate to predictions
based on concentration and chain architecture effects. To this end, we employ a variety of
constitutive equations to model dilute and concentrated polymeric solutions as well as
linear and branched polymeric melts. For the dilute solutions we employ the FENE-CR
�Chilcott and Rallison �1988�� and FENE-P �Bird et al. �1987�, Bird et al. �1980�� con-
stitutive equations. To model dilute, semi-dilute and concentrated solutions we use the
Giesekus constitutive equation �Bird et al. �1980�, Giesekus �1982�� and for polymeric
melts we use the XPP �Verbeeten et al. �2001, 2002�� �for both linear and branched

polymers� constitutive equation. The choice of the constitutive equations has been made
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to satisfy the primary criterion of being able to model the effect of concentration and
chain architecture of polymeric fluids, while retaining sufficient mathematical simplicity
for computational tractability �i.e., continuum level description�.

II. MATHEMATICAL FORMULATION

The governing equations and the solution methodology for the steady free surface
problem have been presented in detail in the studies conducted by Lee et al. �2002� and
Bhatara et al. �2004� and we reproduce the equations briefly in this paper.

For the two-dimensional, steady free surface problem depicted in Fig. 1 the governing
equations that impose conservation of mass and momentum for an incompressible fluid in
this geometry, in the absence of gravity and inertia, are

�� · u� = 0, �1�

− ��
P

Ca
+ �� · �= = 0, �2�

where u� is the velocity vector, P is the pressure and �= is the total stress tensor formed by
the sum of the Newtonian solvent stress, �=s, and the polymer stress, �=p. Ca is the capillary
number and is defined as Ca=�U /�, where � is the total viscosity of the fluid at zero
shear rate, U is the characteristic velocity of the problem, and � is the surface tension.

The basic equations are nondimensionalized as

�x,y��=��b,b�, �u,v��=�U, P�=�
�

b
, �= �=�

�U

b
. �3�

A. Dilute polymeric solutions: FENE-CR and FENE-P models

As mentioned before, to model the dynamics of dilute polymeric solutions, we employ
elastic dumbbell models, namely, the FENE-CR �for Boger fluids� and FENE-P �to ex-
amine the effect of shear thinning� models. Several studies �Lee et al. �2002�, Pasquali
and Scriven �2002�, Bhatara et al. �2004�, Grillet et al. �1999�� have previously shown the
adequacy of these models to describe the interfacial dynamics of this class of fluids in a
variety of simple and complex kinematics flows.

Under steady flow conditions, the constitutive equation for a FENE-CR model is given

FIG. 1. Schematic of the Hele-Shaw cell flow. The flow domain can be divided into three distinct regions: the
thin film region, the capillary transition region, and the parallel flow region.
by
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u� · �� C= = C= · �u
=

+ �u
=

T · C= −
f�R�
Wi

�C= − I=� , �4�

where Wi=U� /b �b is the gap separation between the plates, � is the relaxation time of
the polymeric fluid and U is the mean fluid velocity�. I= is the identity matrix, C= is the
polymer conformation tensor and represents an ensemble average of the dyadic product
RR= of the dumbell end to end vector R� . f�R� is the entropic spring force law, given by

f�R� =
1

1 −
Tr�C�

L2

, �5�

where L is the finite extensibility parameter, i.e., the ratio of the length of a fully extended
polymer to its equilibrium length. The larger the value of L, the more extensible is the
polymer. The total stress is written as the sum of the viscous stress and the polymer
stress,

�= = 2S�̇
=

+
�1 − S�

Wi
f�R��C= − I=� , �6�

where �̇
=

is the strain rate tensor, while S is the ratio of the solvent viscosity to the total
viscosity and provides a measure of polymer concentration in the fluid. The FENE-P
model can be obtained by substituting the term −f�R��C= − I=� /Wi by −�f�R�C= − I=� /Wi.

In this study, the model parameters chosen for both the rheological characterization
and the computation for the FENE-CR and FENE-P models are contained in Table I�a�.
The choice of model parameters is motivated by prior experimental and computational
studies with this class of fluids �Lee et al. �to be published�, Chilcott and Rallison �1988�,
Bird et al. �1987�, Oene and Cragg �1962�, Noda et al. �1968��.

The difference between the two models is that FENE-CR has a constant shear viscos-
ity, while the FENE-P is shear thinning, though the amount of shear thinning depends on
the extensibility parameter �i.e., at low shear rates, �−�s	L2 / �L2+3� and at high shear

2/3

TABLE I. Model parameters used in rheological study and computations.

�a�

Model
L �extensibility

parameter� S ��s /�s+�p�

FENE-CR 5,10 0.85
FENE-P 10 0.85

�b�
Model S ��s /�s+�p� 


Giesekus 0.85 0.01, 0.1
Giesekus 0.1 0.5

�c�
Model q �b /�s 


XPP 1 7.0 0.5
XPP 5 3.0 0.06
rates �−�s	L , where � is the polymer shear viscosity and �s is the solvent viscosity�
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�Bird et al. �1987��. In a steady shear flow, i.e., u=y, v=w=0, at a Wi of 1.0, the FENE-P
�L=10� model starts to display a slight amount of shear thinning of viscosity while the
FENE-CR model remains nonshear thinning. Furthermore, the first normal stress coeffi-
cient, �1, shear thins for both models, while the second normal stress coefficient, �2, is
zero �Bird et al. �1987��.

In a steady planar extensional flow, i.e., u=x, v=−y, w=0, both models display sig-
nificant extensional hardening at Wi=0.5. Physically, this can be understood as the coil
stretch transition that the polymer chains undergo at Wi=0.5. Furthermore, it can be
observed that the extensional viscosity is bounded as Wi approaches infinity �asymptotes
to L2 for both FENE-CR and FENE-P�. In transient planar extensional flow, both
FENE-CR �L=10� and FENE-CR �L=5� display extensional viscosities which increase
monotonically with increasing strain, with no stress overshoot, and tending asymptoti-
cally towards values corresponding to steady planar extensional flow.

It is worth noting that we are interested in the planar extensional viscometric behavior
rather than the uniaxial extensional behavior because the flow �of the air displacing fluid
in the Hele-Shaw cell� at the free surface is planar extensional, and we subsequently
relate the normal stresses generated at the free surface to the extensional viscosity of the
various models.

B. Dilute, semidilute and concentrated solutions: Giesekus model

The Giesekus model �i.e., an elastic dumbbell model with anisotropic hydrodynamic
drag on the beads� has been selected for modeling the dynamics of semidilute and con-
centrated polymeric solutions due to the fact that prior studies have shown that it can
adequately describe dynamics of this class of flows in both simple and complex kinemat-
ics flows �Giesekus �1982�, Burghardt et al. �1999��. Under steady flow conditions the
constitutive equation for the Giesekus model can be written as

u� · �� C= = C= · �u
=

+ �u
=

T · C= − � f�R�
Wi

C= − I=� +



Wi
�C= − I=��f�R�C= − I=� . �7�

The parameter 
 is a model parameter and the term containing 
 is attributed to
anisotropic hydrodynamic drag on the constituent polymer molecules. It should be noted
that 
 can be indirectly related to the concentration of the polymer, i.e., 
=0 represents
dilute solutions, while 
=0.5 represents concentrated solutions. For physically relevant
results it is required that 0�
�0.5, as for values of 
�0.5, the shear stress ��xy� plotted
as a function of Wi displays a maximum, which is not observed experimentally for this
class of fluids �Bird et al. �1987��. The model parameters chosen for this study are
contained in Table I�b�.

Under steady shear flow the Giesekus model displays shear thinning. The decrease in
the shear viscosity with Wi is enhanced as 
 is increased. In steady shear flow �i.e., u
=x, v=w=0�, for 
�0, it can be shown that the shear viscosity asymptotes to ��1−
� /

at high shear rates �Bird et al. �1987��. The first normal stress coefficient decreases with
increasing shear rate and the rate of decline increases with increasing 
. The second
normal stress coefficient is nonzero and negative, and can be varied in magnitude relative
to the first normal stress coefficient by adjusting the value of 
. Under steady planar
extensional flow, for low values of 
, extensional hardening �with finite asymptotic
value� is observed. The magnitude of the extensional viscosity decreases with increasing

. At 
=0.5, the Giesekus model displays a very slight extensional hardening behavior

and the steady extensional viscosity is largely independent of strain rate. Under transient
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planar extensional flow, for all values of �
�, the extensional viscosity shows a monotonic
increase with increasing strain and no stress overshoot.

C. Polymeric melts: XPP model

Since theories based on the concept of reptation proposed by deGennes �Doi and
Edwards �1986�, deGennes �1971�� have emerged as the primary tool for describing the
rheology of entangled polymeric systems, we have selected the pom-pom constitutive
equation �Verbeeten et al. �2001, 2002�, Milner and Mcleish �1998�� to investigate the
dynamics of polymeric melts. This choice has been motivated by the fact that this model
not only contains the essential physics to describe the dynamics of entangled polymeric
systems �i.e., evolution equations for the orientation and stretch�, but also, by appropriate
selection of the model parameters, one can describe the nonlinear rheology of both linear
and branched entangled polymeric fluids.

The key feature of the model is the decoupling of relaxation times for stretch and
orientation. The simplified topology consists of a chain backbone and a number of dan-
gling arms on both ends of the backbone. Verbeeten et al. �2001� incorporated local
branch-point displacement and modified the orientation equation of the original differen-
tial version to the extended Pom-Pom model in order to resolve three major issues:
discontinuities in steady state elongation, unbounded orientation at high strain rates, and
a zero second normal stress difference in shear. In addition the XPP model can be written
in a differential form that makes it computationally attractive. The constitutive behavior
of a single mode XPP model can be represented with the following equations,

u� · �� �= − �u
=

T · �= − �= · �u
=

+ ����−1 · �= = 2GD= , �8�

where G is the plateau modulus and D= = �1/2���u
=

+�u
=

T� is the rate of deformation tensor.
The function ���=�−1 is defined as

���=�−1 =
1

�b
� 


G
�= + F��=�I= + G„F��=� − 1…�=−1� , �9�

with

F��=� = 2re���−1��1 −
1

�
� +

1

�2�1 −

 Tr��= · �=�

3G2 � , �10�

and

� =�1 +
Tr��=�
3G

, �11�

r =
�b

�s
, �12�


 =
2

q
, �13�

where � is the backbone tube stretch, defined as the length of the backbone tube divided
by the length at equilibrium, I= is the unit tensor, �b is the relaxation time of the backbone
tube orientation �equal to the linear relaxation time�, �s is the relaxation time for the
stretch, 
 a parameter defining the amount of isotropy, 
 a parameter signifying the

influence of the surrounding polymer chains on backbone tube stretch, and q represents
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the number of arms at the ends of the backbone. For this study, we use two values of q,
i.e., q=1 to represent linear melts, and q=5 to represent branched melts. The value of
q=5 is chosen so as to attain extensional thickening behavior typical of branched poly-
meric melts, while ensuring that the model produces monotonic shear stress as a function
of Wi. The model parameters used in this study are contained in Table I�c�.

It is worth noting that using the aforementioned definition of backbone stretch �see Eq.
�15��, the computations stop if Tr��=� /3G�−1, which is aphysical since Tr��=� should be
positive. This has been shown to occur before at the front and back stagnation points in
the flow around a cylinder at sufficiently high Wi �Verbeeten et al. �2002��. This problem
can be obviated by rewriting the backbone stretch equation as a double-equation XPP
model and in this paper we implement the XPP model in an equivalent double-equation
fashion, i.e., we express the polymeric stress explicitly in terms of the backbone stretch
��� and the orientation tensor �Q

=
� as

�= = 3G�2Q
=

− GI= . �14�

The evolution equations for the orientation tensor and the backbone tube stretch are given
by

u� · �� Q
=

− �u
=

T · Q
=

− Q
=

· �u
=

+ 2�D= :Q
=

�Q
=

+
1

�b�2�3
�4Q
=

· Q
=

+ �1 − 
 − 3
�4 Tr�Q
=

· Q
=

��Q
=

−
1 − 


3
I=� = 0, �15�

�̇ = ��D= :Q
=

� −

exp
2

q
�� − 1�

�s
�� − 1� . �16�

Under shear flow, the XPP model, like the FENE-P and Giesekus model, displays
shear thinning behavior. The first normal stress coefficient decreases at higher shear rates,
while the second normal stress coefficient is nonzero and negative. In steady extensional
flow, however, unlike the FENE-CR, FENE-P and Giesekus models, XPP �q=5� displays
a region of extensional hardening, followed by a region of mild extensional thinning. This
behavior is typical of branched polymeric melts �Verbeeten et al. �2001, 2002��. Setting
q=1 results in a very small amount of extensional hardening and hence the XPP model
with q=1 can be used to model the behavior of linear entangled polymeric systems.
Under transient planar extensional flow, the XPP model displays a monotonic increase in
the extensional viscosity with increasing strain for both q=1 and q=5. It is also worth
noting, that for values of 
 greater than zero, the steady shear and transient and steady
planar extensional behavior is independent of the value of 
.

D. Boundary conditions

The free surface boundary conditions are the kinematic condition

u� · n� = 0, �17�

the normal stress balance

n� · ��= − I=P� =
�� s · n�

Ca
, �18�
and the vanishing shear stress
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n� · �= · t� = 0, �19�

where n� and t� are the unit vectors normal and tangent to the free surface respectively and
�� s denotes the surface divergence operator. The governing equations are solved by con-
sidering a coordinate system that moves at the same speed as the bubble tip. In this
reference frame the corresponding boundary conditions are the no slip condition on the
solid wall,

u = 1, v = 0; y = 0, 0 � x � � , �20�

symmetry conditions at the centerline,

�sy = 0, v = 0; y =
1

2
, 0 � x � xc �21�

xc, u� = 0, �22�

where xc refers to the x coordinate of the bubble tip. At the outflow, a fully developed
velocity profile is assumed in the thin film, i.e.,

�2u

�y2 = 0, �23�

while far from the air fluid interface the velocity profile takes on the following form for
the FENE-CR model �Lee et al. �2005�, Reinelt and Saffman �1985��:

u = 6„1 − 2h��1 − �h��2�…y�y − 1� + 1, v = 0. �24�

The quantity h� is the dimensional thickness of the hydrodynamic coating left behind by
the advancing air bubble, and its value is determined as part of the solution. For the rest
of the models �FENE-P, Giesekus, XPP� the velocity profiles are dictated by nonlinear
differential equations that are solved numerically. Specifically, at the inflow, a unidirec-
tional shear flow �u=F�y�� is assumed and for each model the conformation tensors are
evaluated using the corresponding constitutive equations �Giesekus �1982�, Bhatara et al.
�2004�; Sureshkumar et al. �1997�, Lee et al. �2002�, Arora et al. �2004�� �see Appendix
A for details�.

All the boundary conditions specified above are essential boundary conditions, i.e.,
they replace the respective governing equations at the boundary nodes, with the exception
of n� ·�= ·n� which is imposed naturally.

E. Coupled DEVSS finite element–pseudosolid formulation

The stabilized FEM formulation used in this study is the scheme employed previously
by us �Lee et al. �2002�, Bhatara et al. �2004�� and we present a brief account of it here.
The DEVSS formulation proposed by Guenette and Fortin �1995�, Yurun et al. �1995�,
Szady et al. �1995�, Talwar and Khomami �1992� is used to discretize the fluid governing
equations. A standard Galerkin formulation is used to discretize the momentum and
continuity equations. The streamline upwind Petrov-Galerkin method �SUPG� proposed
by Brooks and Hughes �1982� is used to integrate the constitutive equations. The FEM
formulation is coupled to the pseudo-solid domain mapping technique developed by
Sackinger et al. �1996� and Cairncross et al. �2000��. The mesh is treated as a fictitious

elastic solid, which deforms in response to boundary loads. As the mesh boundary con-
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forms to the domain occupied by the fluid, the mesh interior moves as though it were a
compressible elastic solid, and the boundary conditions relate the actual free surface
problem to the pseudosolid formulation.

The residual equations obtained via the FEM formulation �Lee et al. �2002�, Bhatara
et al. �2004�� are solved via the Newton’s iteration method, with first order continuation
in both Ca and Wi. In this study, we employ the finest mesh used in our previous studies
for the FENE-CR model, for which it was shown to be sufficiently refined �Bhatara et al.
�2004��. Since introducing shear thinning or reducing extensional thickening results in
reduced stresses in the stress boundary layer in the capillary transition region as well as
the tip of the bubble, we expect the chosen discretization to perform extremely well �i.e.,
produce converged results� for the remaining constitutive models considered.

III. FLOW FIELD COMPARISONS

A. Newtonian flow field

In the Newtonian flow, as the Ca is increased, the film thickness is also increased �Lee
et al. �2002�, Bhatara et al. �2004��. The monotonic increase of the film thickness with Ca
occurs because as the Ca is enhanced, the viscous drag on the fluid increases and propels
more fluid into the thin film region �Ro and Homsy �1995�, Lee et al. �2002�, Bhatara et
al. �2004��. As the Ca is increased the recirculation region disappears and we obtain a
complete bypass flow. The transition from the recirculation flow to the bypass flow
occurs at a Ca of about 0.85. To further quantify the flow field we calculate the effective
strain or the second invariant of the strain rate tensor �W� and the extensional rate �E�,
defined as

W =
1

2
�eijeij − ekk

2 � , �25�

E =
�eijeji�1/2

�eijeji�1/2 + ���ij� ji�1/2�
, �26�

where eij is the strain tensor and �ij is the vorticity tensor.
As Ca is increased, the maximum effective strain rate �that occurs at the wall below

the thin film� is reduced. This is attributed to the increase in the hydrodynamic film
thickness with increasing Ca.

B. Viscoelastic flow field

Figure 2 illustrates the effect of elasticity on the flow field for a variety of fluids at
different Ca. At low Ca, for all fluids �FENE-CR, FENE-P, Giesekus and XPP�, there is
a recirculation region, as observed in the Newtonian flow �see Figs. 2�a� and 2�c��.
However, for the same Ca, the effect of addition of elasticity or increasing the Wi is a
decrease in the strength of the recirculation region and drawing of the lateral stagnation
lines towards the vertex of the bubble �Lee et al. �2002�, Bhatara et al. �2004��. At Ca of
order unity, the recirculation region disappears and a complete bypass flow is obtained
�see Figs. 2�e� and 2�g��.

For both recirculation and bypass flow, the maximum effective strain rate for vis-
coelastic flow is a function of the deviation in the film thickness from the Newtonian
case. As in the Newtonian flow, the maximum strain rate is observed at the wall in the
thin film region �see Figs. 2�b�, 2�d�, 2�f�, and 2�h��. High strain rates are also observed

close to the interface in the capillary transition region. The latter region is of more
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interest since it directly affects the stresses at the interface. It is observed that as the film
thickness increases, the strain rate �both at the wall and near the free surface� reduces �see
Figs. 3�a� and 3�b��. Furthermore, the strain rate scales with the film thickness, i.e., the
product of the maximum effective strain rate and the deviation in film thickness from the
Newtonian case as a function of Ca can be nearly collapsed onto a single curve �see Fig.
3�c��, indicating that there is a direct correlation between film thickness and strain rates.
Further evidence of this can be seen in Fig. 3�b� which shows the maximum effective
strain rate as a function of Wi at Ca=0.2. For the dilute solutions �FENE-CR, FENE-P
and Giesekus �
=0.01� fluids�, the semidilute solution �Giesekus �
=0.1� fluid�, and the
branched polymeric melt �XPP �q=5� fluid� that are extensional hardening, the strain rate
initially increases at low Wi and then decreases as Wi is increased. For the fluids that are
not extensional hardening, i.e., the concentrated solution �Giesekus �
=0.5� fluid� and
the linear polymeric melt �XPP �q=1� fluid�, the strain rate steadily increases with Wi. We
subsequently show that the film thickness curves follow similar trends �i.e., film thick-
ening as Wi is increased, except for the Giesekus �
=0.5� and XPP �q=1� fluids, that
remain film thinning�.

FIG. 2. Contours of the streamlines and effective strain rate at Wi=0.6 for different Ca: �a�, �b� FENE-P �L
=10�, Ca=0.01; �c�, �d� Giesekus �
=0.5�, Ca=0.2; �e�, �f� XPP �q=5�, Ca=1.0; �g�, �h� FENE-P �L=10�,
Ca=1.0.
To precisely correlate the flow dynamics to the rheological properties of the various
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fluids, we analyze the two flow regimes separately, starting with the recirculation flow
and then proceeding to the bypass flow, with particular emphasis on the recirculation flow
as it is most often encountered under a variety of processing conditions �Lee et al. �2002�,
Bhatara et al. �2004�, Giavedoni et al. �1997��.

IV. FILM THICKNESS AND INTERFACE DYNAMICS

A. Recirculation flow

Ro and Homsy �1995�, by employing a low Wi asymptotic analysis of the Oldroyd-B
model, have shown that at low Ca, the presence of elasticity will result in a small film
thinning effect. To understand the mechanism of film thinning, we briefly elucidate the
mechanism proposed by Ro and Homsy. The authors found that film thickness is deter-
mined by two major competing forces, normal stress gradients in the flow direction �i.e.,
��xx /�x�, and shear stress gradients �i.e., ��xy /�y� in the gap direction. If the normal stress
gradients are positive, they would act to assist the passage of fluid elements into the thin
film region and result in film thickening. The shear stress gradients are the viscous
stresses responsible for dragging the fluid elements in the direction of the wall velocity
and hence forming the hydrodynamic coating �see Fig. 4�. In the limit of small Ca and
Wi, the authors show that film thinning results due to the presence of negative normal
stresses in the flow direction, i.e., ��xx /�x�0, that are greater than the shear stress
gradients. This phenomena has been observed in the large scale flow simulations con-
ducted by �Lee et al. �2002� and Bhatara et al. �2004��.

FIG. 3. �a� Variation of maximum effective strain rate with Ca at Wi=0.6, �b� Variation of maximum effective
strain rate with Wi at Ca=0.2, �c� Variation of maximum strain rate scaled with film thickness with Ca at Wi
=0.6.
As Wi is increased beyond the scope of Ro and Homsy’s asymptotic theory, for the
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FIG. 4. Contour plots of �xx and line plots of stress and stress gradients at Wi=0.6, Ca=0.2. A marks the
location of the interface stagnation point, and B the point at which free surface gradient �dh /dx� falls below
10−5: �a�, �b� Giesekus �
=0.01�; �c�, �d� XPP �q=5�; �e�, �f� Giesekus �
=0.5�; �g�, �h� XPP �q=1�.
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FENE-CR fluid, there is a film thickening effect �Lee et al. �2002�, Bhatara et al. �2004��.
The film thickening is accompanied by the formation of a steep normal stress boundary
layer in the capillary transition region that results in positive normal stress gradients
���xx /�x�0�, that drag more fluid into the thin film region. Similar trends are observed
for the other extensional hardening fluids, i.e., the FENE-P, Giesekus �
=0.01,0.1�, and
the XPP �q=5� fluids �see Figs. 5�a�–5�d��. However, the amount of film thickening
depends on the extensional hardening of the fluid, and is largest for the most extensional
hardening fluid. More specifically, at the same Wi, the FENE-CR �L=10� fluid shows the
largest film thickness �highest deviation from Newtonian film thickness�, followed in
order, by the FENE-P, Gieseksus �
=0.01�, XPP �q=5� and Giesekus �
=0.1� fluids.
These trends are illustrated in Fig. 6�a�. Furthermore, reducing the extensibility parameter
for the FENE-CR fluid, from L=10 to L=5, results in a dramatic decrease in the amount
of film thickening. The fluids that are not extensional hardening, i.e., the Giesekus �

=0.5� and XPP �q=1� fluids, do not display film thickening, infact they display a strong
film thinning effect. This is due to the fact that in the entire Wi range explored, the normal
stress gradient in the capillary transition region is negative and larger than the shear stress
gradients, hence resulting in a film thinning effect �see Figs. 5�e�–5�h��.

Contours of the polymer stress ��xx� for three different fluids �FENE-CR �L=10�,
FENE-P �L=10� and Giesekus �
=0.01�� with increasing Wi is displayed in Figs. 6�b�,
6�d�, and 6�f�, respectively. At high Wi, there exists a steep stress boundary layer in �xx,
due to significant stretch of the polymers downstream of the lateral stagnation line. As
expected an increase in the maximum stress in the stress boundary layer, and a decrease

FIG. 5. �a� Percentage deviation from Newtonian film thickness with Wi at Ca=0.2; �b� Maximum normal
stress ��xx

max� in the stress boundary layer as a function of Wi at Ca=0.2; �c�, �d� Film thickness scaled with �xx
max

as a function of Wi at Ca=0.2.
in the thickness of the boundary layer, is achieved with increasing Wi, although both the
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magnitude of the stress in the stress boundary layer, and the thickness of the stress
boundary layer depend on the extensional hardening of the fluid �see Fig. 6�b��. At the
same Wi, the magnitude of the maximum normal stress follows the same order with
respect to the choice of the fluid as the film thickness, i.e., the largest stresses and the
steepest boundary layer are obtained for the most extensional hardening fluids and reduce
with decreasing extensional hardening. The Giesekus �
=0.5� and XPP �q=1� fluids, that
do not display any significant extensional hardening, do not show the formation of any
significant stresses at the interface in the capillary transition region as expected �see Fig.
6�b��.

The formation of the stress boundary layer occurs due to the highly convergent nature
of the flow field in the capillary transition region. Since it is only the fluid elements near
the free surface that are affected, we propose that the formation of the stress boundary
layer is a local phenomenon, dictated by the extensional characteristics of the interface.
An examination of the streamlines and the extension rates shows that there is a region of
high extension rates located close to the interface in the capillary transition region �where
the flow is largely a planar extensional flow�, while a shear dominated mixed kinematics

FIG. 6. Contours of the extensional rate and normal stress ��xx� at Ca=0.2 and Wi=0.6 for three different
models. �a� and �b� correspond to FENE-CR �L=10�; �c� and �d� correspond to FENE-P �L=10�; �e� and �f�
correspond to Giesekus �
=0.01�.
flow exists elsewhere. Further evidence suggesting that the normal stresses in the stress
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boundary layer is a result of the extensional flow at the interface is obtained by an
examination of the contours of the extension rates, that are similar to and closely parallel
the contours of �xx near the free surface �see Figs. 6�a�–6�f��.

As the Wi is increased the shape of the interface goes through a series of transitions. At
low Wi, the bubble adopts a circular front. The effect of increasing Wi is to deform the
shape of the bubble cap by drawing the interface towards the tip of the bubble and
leading to an increased compression in the capillary transition region. This has been
observed before for the FENE-CR fluid �Bhatara et al. �2004��, and is also true for the
other extensional hardening fluids, i.e., the FENE-P, Giesekus �
=0.01,0.1�, and XPP
�q=5� fluids �see Figs. 7�a�–7�c��. The amount of compression depends on the exten-
sional hardening of the fluid and reduces as the extensional hardening is decreased. As
the Wi is increased further, dilute solutions �FENE-CR, FENE-P and Giesekus �

=0.01� fluids� display a meniscus invasion phenomenon, wherein the tip of the bubble is

FIG. 7. Plots of the free surface shape at Ca=0.2, Wi=0.6: �a� Dilute solutions; FENE-CR �L=10�, FENE-P
�L=10�, and Giesekus �
=0.01� fluids; �b� semidilute/concentrated solutions; Giesekus �
=0.1,0.5� fluids; �c�
polymeric melts; XPP �q=1,5� fluids; �d� pressure gradient along the plane of symmetry at Ca=0.2, Wi=0.6;
�e� normal stress gradient ���xx /�x� along the plane of symmetry at Ca=0.2, Wi=0.6; �f� normal stress gradient
���yy /�x� along the plane of symmetry at Ca=0.2, Wi=0.6. In all plots x is the distance along the symmetry line
measured from the tip of the bubble.
drawn into the fluid and the free surface shape is markedly different from the Newtonian



945FREE SURFACE DISPLACEMENT FLOWS
free surface shape �see Fig. 7�a��. These observations are consistent with experimental
observations for dilute solutions �Lee et al. �2004��. Furthermore, the meniscus invasion
phenomenon is accompanied by a steep local pressure gradient near the tip of the bubble
that is enhanced as Wi is increased �see Fig. 7�d��. This local pressure gradient quickly
dissipates as one moves away from the tip of the bubble and is followed by a monotonic
decrease in the pressure �Bhatara et al. �2004��. The semidilute/concentrated solutions
�the Giesekus �
=0.1,0.5� fluids� and polymeric melts �the XPP �q=1,5� fluids� do not
display the phenomenon of meniscus invasion �see Figs. 7�b� and 7�c�� as the normal
stresses in the stress boundary layer never get large enough in these fluids due to lack of
significant extensional hardening.

It has been shown previously that the presence of elasticity results in three major
competing forces at the bubble tip �Bhatara et al. �2004��, a reduction in strain rate due to
polymeric restoring forces that result in reduced viscous normal stresses, an increased
pressure drop �see Fig. 7�d��, and accumulation of elastic normal stresses near the central
stagnation line �see Figs. 7�e� and 7�f��. The pressure modification is related to the
maximum normal stress in the stress boundary layer in the capillary transition region, and
the steep local pressure gradient is only observed for highly extensional hardening fluids.
We expect these forces to play a significant role in the stability characteristics of the flow.
Furthermore, the steep local pressure gradient and the accompanying meniscus invasion
observed for the highly extensional hardening fluids is most likely related to the cusping
instability observed by Lee et al. �2005�.

As stated earlier, we have shown previously, by employing diverging channel walls,
that both film thickening and the boundary layer stress formation are largely independent
of bulk dynamics �Bhatara et al. �2004��. Furthermore, the film thickness normalized with
the maximum stress in the stress boundary layer in the capillary transition region col-
lapses onto a single universal curve �for all diverging channels�, thereby suggesting that
the film thickening is driven by the maximum stress in the elastic stress boundary layer at
the free surface. We explore this correlation further by plotting the normalized film
thickness for the different extensional hardening fluids, as a function of Wi. Once the
stress boundary layer forms �at a Wi of about 0.25�, the normalized film thickness for the
FENE-CR �L=10, and L=5� fluid collapse onto a single curve �see Fig. 5�c��. The
normalized film thickness for the remaining fluids also nearly collapse onto the same
universal curve, although a closer examination of the high Wi region shows that there are
some deviations �see Fig. 5�d��. We attribute the deviations in the FENE-P, Giesekus and
XPP fluids to the shear thinning viscosity that is absent in the FENE-CR fluid. The
reduction in film thickening because of shear thinning viscosity will be discussed in more
detail in Sec. V.

B. Bypass flow

As in the recirculation flow, the extensional hardening fluids, i.e., the FENE-CR,
FENE-P, Giesekus �
=0.01,0.1� and XPP �q=5� fluids display a film thickening effect
because of the presence of elasticity �see Fig. 8�. The flow displays a steady monotonic
increase in film thickness with increasing Wi, with the FENE-CR �L=10� fluid displaying
the highest deviation from the Newtonian film thickness, and the Giesekus �
=0.1� fluid
displaying the least, while both the non-extensional hardening fluids, i.e., the Giesekus
�
=0.5� and XPP �q=1� fluids display film thinning �see Fig. 8�e��. The increase in film
thickness with the extensional hardening fluids can be attributed to the increase in the
extension rate near the bubble tip. The magnitude of the normal stresses near the tip of

the bubble is now larger and can cause a change in the bubble curvature due to the normal
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stress boundary condition. As shown previously �Bhatara et al. �2004��, the stress profiles
obtained for the FENE-CR fluid are qualitatively very different from the stress profiles in
case of the recirculation flow. The stresses at the tip of the bubble, i.e., the stagnation

FIG. 8. Contour plots of �xx and �yy and line plots of stress and stress gradients at Ca=1.0 and Wi=0.6: �a�, �b�
Giesekus �
=0.01�; �c�, �d� XPP �q=5�. s is the distance along the interface measured from the tip of the
bubble. �e� Percentage deviation from Newtonian film thickness with Wi at Ca=1.0. �f� Maximum of the trace
of the stress tensor ��ii

max� in the stress boundary layer at bubble tip as a function of Wi at Ca=1.0. �g� Film
thickness normalized with �ii

max as a function of Wi at Ca=1.0.
point, are enhanced. Even though an elastic stress boundary layer is observed in the
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capillary transition region, the magnitude of normal stresses is much smaller than in the
recirculation flow, because the rate of strain is smaller than in the recirculation flow, due
to lack of rapid acceleration of the fluid elements into the thin film region. The formation
of stress boundary layers at the stagnation point and in the capillary transition region
occurs at lower Wi for the bypass flow because of the strong extensional nature of the
flow and higher extension rates close to the interface. An additional feature of the stress
profiles is that now both the �xx and �yy components of normal stress are comparable in
magnitude �see Figs. 8�a� and 8�c��. This is because the tangent to the stagnation point, at
the interface, has components of similar magnitude in both the x and y directions, and
hence the conformation dyadic has finite and comparable values in both directions. As
expected, the magnitude of the maximum stress in the stress boundary layer is largest for
the most extensional hardening fluids, i.e., the FENE-CR �L=10� and FENE-P �L=10�
fluids and smallest for the least extensional hardening fluid, i.e., the Giesekus �
=0.1�
fluid. The XPP �q=1� and Giesekus �
=0.5� fluids do not display any noticeable normal
stresses.

Since the magnitude of normal stresses in the stress boundary layer in the capillary
transition region is small in comparison to that of the recirculation flow, the amount of
compression of the bubble in the capillary transition region is smaller �see Figs.
9�a�–9�c��. However, similar to the recirculation flow, the amount of compression of the
bubble in the capillary transition region is largest for the dilute solutions and reduces as
the fluid becomes less extensional hardening. Hence, it is smallest for the concentrated
solution �Giesekus �
=0.5�� and the linear polymeric melt �XPP �q=5��. Furthermore,
the normal stress balance at the interface now has significant contributions from the
normal stresses at the bubble tip �see Fig. 9�d��. However, unlike the recirculation flow,
the normal stresses in the bypass flow for the range of Wi examined never get large
enough for the meniscus invasion phenomenon to occur. This is also corroborated by the
fact that elasticity does not significantly alter the local pressure distribution near the
bubble tip �see Fig. 9�e��. These observations have been previously reported for the
FENE-CR fluid �L=10� �Bhatara et al. �2004�� and are reproduced for the rest of the
fluids. As in the recirculation flow, shear thinning or reduction in extensional thickening
results in reduced stresses in the stress boundary layer, and hence minimizes shape
changes.

Unlike the recirculation flow, the film thickness is now a function of normal stresses
formed both in the capillary transition region and at the tip of the bubble. However, since
the normal stresses at the tip of the bubble are more dominant than the normal stresses in
the capillary transition region �see Figs. 8�b� and 8�d��, the film thickness normalized
with the maximum of the trace of the stress tensor ��ii

max� at the bubble tip nearly collapses
onto a single curve once boundary layer formation sets in �i.e., for Wi�0.25�. This is
illustrated in Fig. 8�g�. As in the recirculation flow, the deviations in this collapse are
more pronounced at higher Wi because of the effect of shear thinning �the normalized
film thickness collapses for the FENE-CR �L=10� and FENE-CR �L=5� fluids that have
the same shear viscosity and does not collapse for the remaining fluids that exhibit shear
thinning viscosity�. Furthermore, since increasing Ca leads to reduced strain rates and
normal stress, the film thickness in the bypass flow is a stronger function of the shear
stress gradients at the wall �see Figs. 8�b� and 8�d�� and hence, more sensitive to the
effects of shear thinning. We account for the reduction in film thickness because of shear

thinning viscosity in Sec. V.
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V. CORRELATION OF FILM THICKNESS TO THE FLUID RHEOLOGICAL
PROPERTIES

At this point we have determined that the film thickness is related to two distinct
phenomena. First, the extensional hardening of the fluid, as it determines the maximum
normal stress in the stress boundary layers ��xx

max in the recirculation flow, and �ii
max in the

bypass flow� and the normal stress gradients ���xx /�x in the recirculation flow, and ��ii /�s
in the bypass flow�. Secondly, the amount of shear thinning displayed by the fluid, as it
determines the viscous drag felt by the fluid elements. In this section, we first show that
we can predict the maximum normal stress in the stress boundary layer in the capillary
transition region using information from the planar extensional behavior of the fluid and

FIG. 9. Plots of the free surface shape at Ca=1.0, Wi=0.6: �a� Dilute solutions; FENE-CR �L=10�, FENE-P
�L=10� and Giesekus �
=0.01� fluids; �b� semidilute/concentrated solutions; Giesekus �
=0.1,0.5� fluids; �c�
polymeric melts; XPP �q=1,5� fluids; �d� normal stress ��xx� along the plane of symmetry at Ca=1.0, Wi
=0.6; �e� pressure gradient along the plane of symmetry at Ca=1.0, Wi=0.6. In all plots x is the distance along
the symmetry line measured from the tip of the bubble.
the flow dynamics. We then develop an accurate correlation between the film thickness
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and the maximum normal stress by incorporating the effect of shear thinning �i.e., ac-
count for the deviations in the normalized film thickness in Figs. 5�c� and 8�g��.

A. Effect of extensional hardening

For the most extensional hardening fluids �the dilute solutions, FENE-CR �L=10� and
FENE-P �L=10��, we start to observe the formation of stress boundary layers and ac-
companying film thickening at Wi of about 0.25 at low Ca �Ca�1.0�. We observe a delay
in the onset of the boundary layer with respect to Wi, a reduction in the maximum stress
in the stress boundary layer and an increase in the thickness of the stress boundary layer
as the extensional hardening of the fluid decreases. For fluids that do not display any
significant extensional hardening we do not observe any noticeable normal stresses. This
indicates that irrespective of the concentration and/or chain architecture, there exists a
direct correlation between the formation of the stress boundary layer and extensional
hardening of the fluid.

Since the flow is inhomogenous and has varying Wi in the flow domain, in order to
draw precise correlations, we define an effective Wi, based on the strain rate scaling with
film thickness, i.e., Wief f =Wi� �b /h�. The local Wi at the interface in the capillary tran-
sition region can then be defined as Wiloc=Wief f � �Wint /Wmax�, where Wint is the strain rate
at the interface where the boundary layer stresses form, and Wmax is the maximum
effective strain rate. The effective and local Wi are plotted as a function of Wi for each
model at a representative value of Ca �Ca=0.2� in Figs. 10�a� and 10�b�, respectively.
Approximate scalings for both Wiloc and Wief f can be obtained �i.e., Wiloc	Wi0.87 and

0.90

FIG. 10. �a� Plot of the effective Wi as a function of Wi at Ca=0.2. �b� Plot of the local Wi as a function of Wi
at Ca=0.2. �c� Plot of the local extensional rate at the interface as a function of Ca. For the viscoelastic fluids,
Wi=0.6.
Wief f 	Wi �. The similar power-law scalings for Wiloc and Wief f indicates that the strain
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rate at the interface normalized with the maximum strain rate is a weak function of Wi.
We calculate the extensional stress based on the local Wi, defined as

�ext = �loc � eloc, �27�

where eloc is the local extensional rate at the interface in the capillary transition region,
and �loc is the extensional viscosity obtained from the steady planar extensional rheology
data based on Wiloc. Our simulations indicates that eloc is a strong function of Ca �i.e.,
predominantly determined by the flow kinematics� and only weakly dependent on Wi.
Consequently, approximate scalings for eloc with Ca can obtained, i.e., in the recirculation
flow �Ca�1.0�, at low Ca, eloc	Ca−0.67, and at moderate to high Ca, eloc	Ca−0.41 �see
Fig. 10�c��, while in the bypass flow �Ca�1.0�, eloc	Ca−0.36. The scaling at low Ca
reflects the Ca2/3 dependence of the film thickness on Ca �Ro and Homsy �1995��.

The extensional stress calculated using Eq. �27� is plotted in Figs. 11�a� and 11�b� for
all fluids, as a function of the actual Wi in the free surface problem, at Ca=0.2. Figure
11�a� shows the extensional stresses at a strain rate of 2 �i.e., the strain rate at the
interface in the capillary transition region at Ca=0.05�, while Fig. 11�b� shows the ex-
tensional stresses at a strain rate of 0.5 �i.e., the strain rate at the interface in the capillary
transition region at Ca=0.2�. As expected, at both strain rates, the extensional stress is a
function of the choice of the fluid, and is largest for the most extensional hardening fluids
�FENE-CR, FENE-P �L=10�� and reduces with decreasing extensional hardening. The
calculated extensional stress shows the same trend with Wi as the maximum normal stress

FIG. 11. �a� Plot of the calculated extensional stress as a function of Wi at a strain rate of 2. �b� Plot of the
calculated extensional stress as a function of Wi at a strain rate of 0.5. �c� Plot of the ratio of the maximum
normal stress ��xx

max� in the stress boundary layer at Ca=0.2 and the extensional stress calculated at a strain rate
of 0.5. �d� Plot of the ratio of the maximum normal stress ��xx

max� in the stress boundary layer at Ca=0.05 and the
extensional stress calculated at a strain rate of 2.0. Wi refers to the actual Wi in the free surface problem.
in the stress boundary layer in the capillary transition region.
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In addition to the qualitative similarities between the trend in the variation of the
maximum normal stress in the stress boundary layer and the calculated extensional stress
with Wi, we also observe good quantitative agreement between them. We plot the ratio of
the observed maximum normal stress in the actual free surface problem, at Ca=0.2 to the
calculated extensional stress at a strain rate of 0.5 as a function of Wi in Fig. 11�c�. There
is a good agreement between the values of the two quantities once boundary layer for-
mation occurs, i.e., �xx

max /�ext	1 �see Fig. 11�c��. Repeating this procedure at Ca=0.05 �at
which the strain rates are higher and consequently the maximum normal stress in the
stress boundary layer is larger�, we find good agreement between the maximum normal
stress and the calculated extensional stress at the higher strain rate of 2.0 �see Fig. 11�d��.

The excellent predictions of normal stresses at the interface based on the steady planar
extensional viscosity of the fluid suggests that the fluid elements experience a significant
amount of strain at the interface above the Wi at which the stress boundary layer is
formed. To verify this point, we have computed the strain on the fluid elements at the
interface downstream of the stagnation point in the capillary transition region �for details
see Appendix B�. Clearly, in the range of Ca where a recirculation flow exists, the fluid
elements experience a very large strain so the appropriate measure would be the steady
planar extensional viscosity �see Table II�. In the case of the bypass flow �Ca�1.0�, the
strain rates are reduced. However, up to a Ca of 2.0, the strain on the fluid elements at the
bubble tip is still large enough that one can use the steady planar extensional viscosity to
predict the extensional stresses. As Ca is increased to a value significantly higher than
2.0, the strain on the fluid elements is small �	1.0� and consideration of the transient
planar extensional viscosity is an important issue in predicting the extensional stresses.

B. Effect of shear thinning

As stated previously, it is observed that the presence of shear thinning in viscosity
results in reduced film thickening. This is clearly illustrated in Fig. 12�a�, where we plot
the ratio of the film thickness for the FENE-CR �L=10� and FENE-P �L=10� fluids, with
the ratio of the shear viscosities of the respective fluids �at the same Wi or same normal
stress�. There is a reduction in the film thickness of about 4% when the shear viscosity is
reduced by about 2% indicating the sensitivity of the film thickness to the difference in
shear viscosity. Since the extensional viscosity and the first normal stress coefficient of
the FENE-CR �L=10� and the FENE-P �L=10� fluids is similar at the same Ca and Wi,

TABLE II. Strain values for different Ca and Wi �FENE-CR �L=10��.

Ca Wi �

0.05 0.4 38.6
0.05 0.5 34.7
0.2 0.4 14.2
0.2 0.5 12.8
1.0 0.4 7.5
1.0 0.5 7.3
2.0 0.4 5.1
2.0 0.5 5.0

10.0 0.4 1.1
10.0 0.5 1.1
it is the shear thinning in the viscosity that reduces the film thickness by reducing the
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shear stress gradients at the wall or the viscous drag felt by the fluid elements �Ro and
Homsy �1995��.

In order to account for shear thinning in the extensional hardening, shear thinning
fluids, namely, the FENE-P, Giesekus �
=0.01,0.1� and XPP �q=5� fluids, we define an
effective Ca based on a normalization of the viscosity with the shear viscosity at the wall
shear rate �also the maximum shear rate�, since the shear rate at the wall predominantly
determines the amount of fluid dragged into the thin film region. The effective Ca, hence,

FIG. 12. �a� Plot of the ratio of film thickness for FENE-P �L=10� and FENE-CR �L=10� with the ratio of
respective shear viscosities at Ca=0.2. �b�, �c� Plot of the ratio of the maximum normal stress ��xx

max� in the stress
boundary layer at the effective Ca and the extensional stress calculated for a strain rate of 0.5, �d� Plot of film
thickness normalized with �xx

max at the effective Ca. �e�, �f� Plot of the ratio of the maximum normal stress ��xx�
in the stress boundary layer at the effective Ca and the extensional stress calculated for a strain rate of 2.0. Wi
refers to the actual Wi in the free surface problem.
is defined as
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Caef f = Ca � ��wall
, �28�

where ��wall
is the dimensionless shear viscosity at the wall shear rate, and is obtained

from the steady shear rheological predictions of that particular fluid. For a particular Wi,
we suggest that the normal stress corresponding to Caef f can be correlated to the exten-
sional stress calculated above. Figures 12�b� and 12�c� show the ratio of the maximum
normal stress corresponding to Caef f to the calculated extensional stress �at a strain rate of
0.5� as a function of Wi. We notice a marked improvement in the agreement between �xx

max

and the calculated extensional stress. Furthermore, the film thickness normalized with
�xx

max corresponding to Caef f now collapses onto a single curve for all fluids �see Fig.
12�d��, thereby establishing that for Wi greater than the critical Wi for boundary layer
formation, the film thickness scales with the maximum normal stress provided shear
thinning is accounted for. This procedure is repeated at Ca=0.05 and again there is a
marked improvement in the agreement between �xx

max and the calculated extensional stress
at a strain rate of 2.0 �see Figs. 12�e� and 12�f��.

For the bypass flow, since Ca is higher, the effect of viscous drag on film thickness is
more pronounced than in the recirculation flow. Hence, shear thinning has a more pro-
nounced effect on film thickness than in the recirculation flow. However, both the maxi-
mum of the trace of the stress tensor ��ii

max� and the film thickness can still be collapsed
with �ext by normalization with Caef f. This is illustrated in Figs. 13�a� and 13�b�, respec-
tively, where we plot the ratio of �ii

max with �ext �at a strain rate of 0.17 which corresponds
to the extensional rate at the interface near the bubble tip at Ca=1.0� and the film
thickness normalized with �ii

max corresponding to Caef f. Even though the deviations in
h /�ii

max �see Fig. 8�g�� are significant at higher Wi, the normalized film thickness collapses
onto a single curve by adjusting Ca.

For the linear polymeric melt represented by the XPP �q=1� constitutive equation and
the concentrated solution represented by the Giesekus �
=0.5� constitutive equation,
since there is no extensional hardening, we propose that it is possible to predict the film
thinning effect directly from the shear viscosity at the wall shear rate �since now it is the
viscous drag that is primarily responsible for determining the film thickness�. To that end,
we scale the film thickness at a particular Ca and Wi with the shear viscosity at the wall
shear rate, and obtain the ratio of scaled film thickness as,

�hCa0,Wi0

hCa1,Wi1

�
��Ca1,Wi1

�Ca0,Wi0

� . �29�

FIG. 13. �a� Plot of the ratio of the maximum trace of stress ��ii
max� in the stress boundary layer at Ca=1.0 and

the extensional stress calculated at a strain rate of 0.17. �b� Plot of film thickness normalized with �ii
max at the
effective Ca for Ca=1.0. Wi refers to the actual Wi in the free surface problem.
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Figure 14�a� shows the deviation in film thickness for the Giesekus �
=0.5� and XPP
�q=1� fluids at two different Ca �i.e., Ca=0.1 and Ca=0.2�. Film thickness is reduced at
lower Ca because of higher shear rates at lower Ca. Figure 14�b� shows the ratio of the
scaled film thickness at Ca=0.2 to the scaled film thickness at Ca=0.1, for different Wi.
For the range of Wi explored, the scaled film thickness collapses onto a single curve for
both fluids, hence, indicating that the film thickness in the absence of extensional hard-
ening can be determined solely based on the steady shear rheological characteristics of
the fluid.

C. Scaling analysis

At this point, it would be helpful to provide approximate scalings for the film thick-
ness with respect to Ca and Wi that emerge from our simulations. The objective behind
this is to illustrate a way by which film thickness variations at low and moderate to high
Ca can be estimated based on flow conditions and the nature of the fluid �extensional
hardening versus nonextensional hardening�.

From Eq. �27�, the extensional stress can be expressed as a function of Wi and Ca, i.e.,

�ext = �loc � eloc 	 g�Wiloc�k�Caef f� = g��Wi�k��Ca� . �30�

1. Recirculation flow

In the recirculation flow, k��Ca� has been determined to be Ca−0.67 at low Ca, and
Ca−0.41 at high Ca �see Fig. 10�c��. In order to determine the dependence of �loc on Wi,
exponential curves are fitted to the steady planar extensional flow data in the coil-stretch
transition region, i.e., 0.5�Wi�2.0 �see Fig. 15�. This region corresponds to the strain
rates within which our calculations are performed. Further support for this can be found
in the estimation of �xx for the calculated strain rates �see Figs. 11�a� and 11�b�� which
suggest that we are in the coil-stretch transition regime. Furthermore, given that for the
extensional hardening fluids, the film thickness scales with the extensional stresses, and
for non-extensional hardening fluids, the film thickness scales with the effective Ca, one
should be able to develop scalings for the film thickness. Based on our calculations at low
Ca, i.e., Ca�0.2 �see Fig. 16�, we obtain scalings for film thickness with Wi and Ca �see
Table III�a��. As Ca is increased �0.2�Ca�1.0�, the film thickness scalings now reflect

0.41

FIG. 14. �a� Plot of the film thickness with Wi for Ca=0.2 and Ca=0.1 for Giesekus �
=0.5� and XPP �q
=5�. �b� Plot of ratio of film thickness to viscosity at different Ca. Wi refers to the actual Wi in the free surface
problem.
a Ca dependence, with Wi dependence remaining approximately the same.
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2. Bypass flow

In the bypass flow �Ca�1.0� we again obtain scalings for film thickness with Wi and
Ca �see Fig. 17 and Table III�b��. We observe these scalings to hold true for values of Ca
that are not significantly greater than 1.0. As the value of Ca is increased, the strain at the
tip of the bubble decreases �see Table II�. For Ca=10.0, the strain is low enough ��
	1.0� for the transient characteristics to be important. Hence, we expect the scaling
analysis based on steady data to be insufficient in predicting film thickness at such high
values of Ca.

VI. CONCLUSION

We have inspected the effect of viscoelasticity on the interfacial dynamics of a Hele-
Shaw cell free surface displacement flow. The FENE-CR �extensional hardening, con-
stant shear viscosity, shear thinning first normal stress coefficient� and the FENE-P �ex-
tensional hardening, shear thinning viscosity and shear thinning first normal stress
coefficient� constitutive equations are used to model dilute polymeric solutions. The
Giesekus constitutive equation �
=0.01,0.1,0.5� is used to model dilute, semidilute and
concentrated solutions. For all values of 
, the model shows shear thinning viscosity and
shear thinning first and second normal stress coefficients and for two of the 
 values
�0.01, 0.1�, the model displays significant extensional hardening. The XPP constitutive
equation is used to model polymeric melts. Linear polymeric melts are represented by
setting q=1, while branched polymeric melts are represented by setting q=5. For both
q=1 and q=5, the model shows shear thinning viscosity and shear thinning first and

FIG. 15. Exponential fits to the steady planar rheological data. Extensional viscosity in steady planar exten-
sional flow: �a� FENE-CR �L=5,10�, FENE-P �L=10�; �b� Giesekus �
=0.01,0.1�; �c� XPP �q=5,
=0.06�.
Shear viscosity in steady shear flow: �d� Giesekus �
=0.5�; XPP �q=1,
=0.5�.
second normal stress coefficients. In steady planar extensional flow the XPP �q=5� model
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TABLE III. Scalings for the film thickness with Wi and Ca. �a� Recirculation flow; �b� bypass flow.

�a� Reciculation flow
Fluid h �scaling�

Dilute solutions: FENE-CR �nonshear thinning� �1−e−0.68Wi0.87
�Ca0.67

Dilute solutions: FENE-P, Giesekus �
=0.01� �1−e−0.68Wi0.87
�e−0.42Wi0.87

Ca0.67

Semidilute solutions: Giesekus �
=0.1� �1−e−1.16Wi0.87
�e−0.38Wi0.87

Ca0.67

Branched polymeric melts: XPP �q=5, 
=0.06� �1−e−1.14Wi0.87
�e−0.38Wi0.87

Ca0.67

Concentrated solutions and linear polymeric melts:
Giesekus �
=0.5� and XPP �q=1,
=0.5�

�e−0.31Wi0.87
�Ca0.67

�b� Bypass flow
Fluid h �scaling�

Dilute solutions: FENE-CR �nonshear thinning� �1−e−0.59Wi0.87
�Ca0.67

Dilute solutions: FENE-P, Giesekus �
=0.01� �1−e−0.59Wi0.87
�e−0.40Wi0.87

Ca0.36

Semidilute solutions: Giesekus �
=0.1� �1−e−1.12Wi0.87
�e−0.38Wi0.87

Ca0.67

Branched polymeric melts: XPP �q=5, 
=0.06� �1−e−0.98Wi0.87
�e−0.38Wi0.87

Ca0.67

Concentrated solutions and linear polymeric melts:
Giesekus �
=0.5� and XPP �q=1,
=0.5�

�e−0.31Wi0.87
�Ca0.36
FIG. 16. Plots of the film thickness obtained from the simulations and the scaling analysis at Ca=0.2: �a�
FENE-CR �L=10�, FENE-P �L=10�, Giesekus �
=0.01�; �b� Giesekus �
=0.1�, XPP �q=5�; �c� Giesekus
�
=0.5�, XPP �q=1�.
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displays a region of significant extensional hardening at lower strain followed by mild
extensional thinning at higher strain, while the XPP �q=1� model does not display any
significant extensional hardening.

In the free surface problem, regardless of the polymer concentration and chain archi-
tecture, the flow displays a recirculation pattern �the strength of which decreases with
elasticity� at low Ca and a bypass flow at high Ca. In case of the recirculation flow, at low
Ca and Wi, all models display a film thinning effect while at higher Ca and Wi, the
extensional hardening fluids display a film thickening effect while the fluids that do not
display any significant extensional hardening remain film thinning. One of the conse-
quences of film thickening is a reduction in the maximum effective strain rate. The
maximum effective strain rate scales with the film thickness for all fluids at all Ca and Wi.
Furthermore, the film thickening is accompanied by the formation of elastic normal stress
��xx� boundary layers, which result in a positive normal stress gradient in the capillary
transition region ���xx /�x�0� in the flow direction. The magnitude of the maximum
stress in the stress boundary layer increases with Wi. Both the film thickness and maxi-
mum normal stress are largest for the most extensional hardening fluids, i.e., the dilute
solutions represented by the FENE-CR, FENE-P and Giesekus �
=0.01� constitutive
equations, and decrease as extensional hardening is decreased, and subsequently smaller
for the semidilute solution represented by the Giesekus �
=0.1� constitutive equation and
the branched polymeric melt represented by the XPP �q=5� constitutive equation. The
fluids that do not display any significant extensional hardening, i.e., the concentrated

FIG. 17. Plots of the film thickness obtained from the simulations and the scaling analysis at Ca=1.0: �a�
FENE-CR �L=10�, FENE-P �L=10�, Giesekus �
=0.01�; �b� Giesekus �
=0.1�, XPP �q=5�; �c� Giesekus
�
=0.5�, XPP �q=1�.
solution represented by the Giesekus �
=0.5� constitutive equation and the linear poly-
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meric melt represented by the XPP �q=1� constitutive equation, display film thinning and
no noticeable normal stresses.

In the recirculation flow, we observe that the film thickness scales with the maximum
normal stress in the stress boundary layer in the capillary transition region near the free
surface. Specifically, for the extensional hardening, nonshear thinning fluids, i.e., the
FENE-CR �L=5� and �L=10� fluids, the film thickness normalized with the maximum
normal stress in the stress boundary layer, collapses onto a single curve. For the exten-
sional hardening, shear thinning fluids, i.e., the FENE-P �L=10�, Giesekus �

=0.01,0.1�, and XPP �q=5� fluids, there are some slight deviations from this collapse.
This is because film thickening is reduced by shear thinning which lowers the viscous
forces that drag fluid into the thin film region. We show that shear thinning can be
accounted for by defining an effective Ca by normalizing the viscosity with the shear
viscosity at the wall shear rate. For a given Wi, the film thickness normalized with the
maximum normal stress at the effective Ca now collapses onto a single curve for the
aforementioned fluids. For the fluids that are shear thinning but not extensional harden-
ing, it is observed that the film thickness scaled with the shear viscosity at the wall shear
rate collapses onto a single curve, indicating that the film thickness solely depends on the
viscous drag felt by the fluid elements.

For the recirculation flow, we correlate the measured film thickness and normal
stresses to the rheological behavior of the fluids. Since the flow is planar extensional at
the interface in the capillary transition region where the stress boundary layer forms, it is
possible to calculate the maximum normal stress in the stress boundary layer using the
extensional viscosity and extensional rate at the interface. Calculation of extensional
stress based on the planar extensional rheology shows good agreement with the maxi-
mum normal stress in the stress boundary layer, indicating that given the planar exten-
sional rheological behavior of a fluid, one can estimate the stresses that would result in
the free surface displacement problem. In order to perform an accurate calculation, de-
tailed knowledge of the flow kinematics at the interface and the wall is required. How-
ever, one can obtain good approximations for film thickness using the correlations ob-
tained from our simulations.

For the bypass flow, the film thickness nearly scales with the maximum of the trace of
the stress tensor at the tip of the bubble. The effect of shear thinning viscosity on the
scaling is more pronounced because of reduced strain rates and normal stresses at the
higher Ca at which the bypass flow occurs. However, as in the recirculation flow, the
deviations in the collapse because of shear thinning can be accounted for by normalizing
the shear viscosity with the viscosity at the wall shear rate. Furthermore, for Ca close to
1.0, the stress at the tip of the bubble can be estimated from the steady planar extensional
rheology, and approximate correlations for film thickness can be determined. However, as
the value of Ca becomes significantly greater than 1.0 �Ca	10.0�, we expect the tran-
sient characteristics to be important and need to be taken into account in determining the
film thickness.

This work provides a comprehensive study of the effect of concentration and chain
architecture of polymeric fluids on observed film thickness and normal stresses in a
steady free surface displacement flow, and provides a basis for further work on under-
standing the effects of viscoelasticity on the interfacial dynamics of free surface displace-
ment flows.
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APPENDIX A: INLET CONDITIONS FOR DIFFERENT MODELS

FENE-P, Giesekus: The inlet conditions for the FENE-P and Giesekus model are more
complicated due to the coupling of the out of plane components of the configurational
tensor with the in-plane deformation.

For the sake of simplicity, the following abbreviations are used:

Cxx − Cyy = n1, �A1�

Czz − Cyy = n2, �A2�

Cxy = n3, �A3�

Czz = 1, �A4�

where

n1 =
2n2�1 − 
n2�


�1 − n2�
, �A5�

n3 =
�1 − n2�2

1 + �1 − 2
�n2
Wi, �A6�

n2 =
1 − n4

1 + �− 2
�n4
, �A7�

n4 =� 1

8
�1 − 
�Wi2
��1 + 16
�1 − 
�Wi2 − 1� . �A8�

Equation �A13� is introduced into Eq. �A12� for calculating n2, and using Eqs. �A10�
and �A11�, n1 and n3 are obtained. By setting 
=0, the inlet conditions for FENE-P are
obtained.

XPP: For the XPP model it is not possible to write an analytically tractable form for

�0. However, it is possible to write analytical expressions for 
=0. Furthermore, since
in simple steady shear flow, the rheological behavior of the XPP model is insensitive to

, we can use the inlet conditions corresponding to 
=0 for nonzero 
:

�xx = 3GWi� 1

�1 − WiSxy�2��2Wi��b�2 + � 1

Wi
�

2Wi2��b�2 + 3
� , �A9�

�yy = �zz = 3GWi� 1

�1 − WiSxy�2�� 1

2Wi2��b�2 + 3
� , �A10�

�xy = 3GWi� 1

�1 − WiSxy�2�� 1

2Wi2 +
�b � , �A11�
3
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Sxy =
Wi

2Wi2 +
�b

3

. �A12�

APPENDIX B: STRAIN CALCULATIONS

In order to calculate the effective strain felt by a fluid element at the free surface in the
capillary transition region where the stress boundary layer has formed, the strain rate is
integrated with respect to time along the path on the free surface. Hence the effective
strain can be calculated as

� = 

0

�

�̇�t�dt . �B1�

In the case of the recirculation flow, at t=0 the fluid element is at the stagnation point at
the interface, and at t=� the fluid element is located at the end of the capillary transition
region. For the bypass flow, at t=0 the fluid element is present at the tip of the bubble,
and at t=� the fluid element is located at the beginning of the capillary transition region.

Using this method of calculation, for Ca�1.0 and for all values of Wi�Wicrit, where
Wicrit is the critical Wi for onset of boundary layer formation, we determine the fluid
elements to have experienced effective strains which are large enough for the steady
analysis to be applicable �see Table II�.
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